The University of Sheffield
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on The University of Sheffield and we can't guarantee its availability, quality, security or accept any liability.

Data for RSOS paper: Thin Al1−xGaxAs0.56Sb0.44 diodes with extremely weak temperature dependence of avalanche breakdown

Figures and raw data for the Royal Society Open Science paper. Data already available on Dryad with a DOI.

Abstract: When using avalanche photodiodes (APDs) in applications, temperature dependence of avalanche breakdown voltage is one of the performance parameters to be considered. Hence, novel materials developed for APDs require dedicated experimental studies. We have carried out such a study on thin Al1–xGaxAs0.56Sb0.44 p–i–n diode wafers (Ga composition from 0 to 0.15), plus measurements of avalanche gain and dark current. Based on data obtained from 77 to 297 K, the alloys Al1−xGaxAs0.56Sb0.44 exhibited weak temperature dependence of avalanche gain and breakdown voltage, with temperature coefficient approximately 0.86–1.08 mV K−1, among the lowest values reported for a number of semiconductor materials. Considering no significant tunnelling current was observed at room temperature at typical operating conditions, the alloys Al1−xGaxAs0.56Sb0.44 (Ga from 0 to 0.15) are suitable for InP substrates-based APDs that require excellent temperature stability without high tunnelling current.

Funding

EPSRC: EP/K001469/1, EU-H2020: H2020-MSCA-ITN-2014-641899

History

Ethics

  • There is no personal data or any that requires ethical approval

Policy

  • The data complies with the institution and funders' policies on access and sharing

Sharing and access restrictions

  • The data can be shared openly

Data description

  • The file formats are open or commonly used

Methodology, headings and units

  • Headings and units are explained in the files

Usage metrics

    Department of Electronic and Electrical Engineering

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC