EACS 2016 paper - Control Strategies for an Underwater Geotechnical Drilling System.pdf (1.09 MB)
Download fileEACS 2016 paper - Control Strategies for an Underwater Geotechnical Drilling System
journal contribution
posted on 2017-03-28, 15:18 authored by Aldo G. Arriaga, Marcos Arroyo, Norma Pérez, Marcelo DevincenziEACS 2016 Paper No. 180
The machine is composed of a set of remotely operated devices that must synchronize with each other: drilling rig, stabilizing legs and three manipulators two cartesian robots and one anthropomorphic robot arm. These manipulators can be operated either manually or in a semiautomated mode. The automated routines aim to substitute the actions of the technicians when handling the tubes and rods in the harsh environment for which the machine is envisioned, allowing the operator to focus on the drilling process (which can be semi-automated as well). Some other benefits that can be obtained by automating the processes are reduction in cycle times and increased repeatability —which leads to higher efficiency rates since the cycle times are more consistent and can be predicted more accurately. All these advantages lead to a reduction of the overall operation cost.
In order to accurately control the position of the electro-hydraulic motion systems a set of Fuzzy-Adaptive PID (proportional-integral-derivative) controllers is implemented. The paper presents an overview of the control loops implementation, performance assessment, distributed control network architecture and the logic behind the tool manipulation and the handling sequences and routines of the MD500.