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ABSTRACT. Computational fluid dynamics models are increasingly proposed for assist-
ing the diagnosis and management of vascular diseases. Ideally, patient-specific flow
measurements are used to impose flow boundary conditions. When patient-specific
flow measurements are unavailable, mean values of flow measurements across small
cohorts are used as normative values. In reality, both the between-subjects and within-
subject flow variabilities are large. Consequently, neither one-shot flow measurements
nor mean values across a cohort are truly indicative of the flow regime in a given per-
son. We develop models for both the between-subjects and within-subject variability of
internal carotid flow. A log-linear mixed effects model is combined with a Gaussian pro-
cess to model the between-subjects flow variability, while a lumped parameter model of
cerebral autoregulation is used to model the within-subject flow variability in response
to heart rate and blood pressure changes. The model parameters are identified from
carotid ultrasound measurements in a cohort of 103 elderly volunteers. Model utility
is demonstrated in a computational study of intracranial aneurysm flow under rest and
exercise.
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1. INTRODUCTION

Numerous computational fluid dynamics (CFD) models of human cardio- and cere-
brovascular physiology are published every year, but few of them make any impact in
clinical practice. This inconvenient truth has been blamed on the improper use of CFD
solvers [21], insufficient validation of biomechanics models [1], and lack of understand-
ing of the clinical decision-making process by the biomedical engineers building the
models [9]. One additional explanation is that many “patient-specific” CFD models fail
to consider the physiological variability of vascular flow, confounding interpretation of
model results and producing overly confident predictions of flow quantities. In our view,
concentrated efforts should be made to identify both the magnitude of this variability
and its effect on the predictions of vascular flow models [18].

Patient-specific modelling of vascular flow requires an accurate description of the
lumen plus the definition of boundary conditions. The latter is done by measuring
patient-specific flow waveforms using either phase contrast magnetic resonance imag-
ing (pcMRI) or ultrasound-based flow measurement techniques. In case patient-specific
flow measurements are not available, cohort-averaged values of flow from the literature
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are often used. For example, the small-scale studies [6, 8, 14] all used pcMRI to mea-
sure carotid flow in young healthy volunteers. The uncertainty caused by not knowing
the exact patient-specific flow can also be quantified by running an ensemble of CFD
simulations over a physiological range of flow variability. This allows the modeller to
establish not only mean values but also variability bounds for the output quantities of
interest. However, few large-scale studies have reported estimates of vascular flow
variability in normal populations. There is a risk that mean values of flow in small co-
horts are biased and almost certainly underestimate the physiological flow variability.
This, in turn, will lead to overconfidence in vascular CFD uncertainty quantification.

The objectives of this study are: (i) identify key patient-specific vascular flow param-
eters, (ii) provide distributions of the flow parameters in a realistic elderly cohort, and
(iii) develop data-driven and mechanistic models for both between-subjects and within-
subject blood flow variability that explicitly incorporate demographic variables (age,
sex, body size). Treatment of demographic variables is standard in biomedical studies,
but relatively few attempts have been made so far to account for them in vascular flow
models (see e.g. [2]). Our models will then provide: (i) cohort-specific boundary condi-
tions to vascular CFD simulations in the case that patient-specific flow measurements
are not available, and (ii) estimates of within-subject flow variability in cases where
patient-specific flow measurements are available only as spot measurements.

Although the methods are general, to demonstrate the utility of the models we focus
on internal carotid arterial (ICA) flow in the context of intracranial aneurysms. The
flow in the left and right ICAs accounts for the majority of cerebral blood flow and is
reported to have around 10-20% between-subjects variability in different studies [6, 12,
20]. Mean flow varies less within-subject due to the modulating effect of the cerebral
autoregulation system, yet changes to the flow waveform can still be observed. In
previous studies, it has been shown that changes in wall shear stress (WSS) induced
by flow variability can significantly change the CFD-based predictions of intracranial
aneurysm rupture risk [19, 25]. We consider within-subject flow variability induced by
changes in systolic blood pressure (BP) and heart rate (HR) during physical exercise,
and study the corresponding changes in WSS indicators, such as time-averaged WSS
(TAWSS) or oscillatory shear index (OSI).

2. MATERIALS AND METHODS

2.1. Patient-specific vascular flow measurements. Patient-specific carotid flow data
(Lido cohort) used in this study were part of an Alzheimer’s disease study conducted
at the Istituto di Ricovero e Cura a Carattere Scientifico San Camillo, Lido di Venezia,
Italy, and previously reported in [11]. The cohort included 103 elderly people (age
73± 7 years), of whom 53 were diagnosed with mild cognitive impairment and the rest
were healthy controls. Exclusion criteria included cerebrovascular disease as main
aetiology, as well as the presence of any cardiovascular disease. The cohort could,
therefore, be identified as elderly but healthy from the standpoint of vascular disease.
The study was approved by the joint ethics committee of the Health Authority Venice
12 and the IRCCS San Camillo (Protocol number 2014.08) and all participants gave
informed consent prior to participation.

To measure carotid flow, ultrasound imaging (Siemens Acuson X300PE, Siemens
Healthineers, Erlangen, Germany) was performed. Both left and right internal carotid
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waveforms were digitised from the DICOM images using im2graph (Shai Vaingast, www.
im2graph.co.il). Flow velocity signals were converted to flow rates by assuming a
circular cross-section and fully developed flow. The resulting flow rate signals were
normalised to unit time and synchronised so that the maximum systolic upstroke point
was matched between all the signals.

2.2. Statistical modelling of between-subjects variability in ICA flow. We previ-
ously modelled between-subjects ICA flow variability in [19], where data from 17 healthy
young adults [6] was used to train a Gaussian process model. In that work, the time-
averaged mean flow rate was normalised for a given arterial diameter to achieve a
time-averaged WSS of 1.5 Pa at the level of the carotid sinus. We extended this model
to include also the between-subjects variability of the time-averaged flow.

The model was trained on log-transformed flow values to ensure that the predicted
flow rates remained positive. The log-transformed ICA flow rates qICA-L and qICA-R were
assumed to consist of two parts; the time-averaged mean flow, ybs, and the time-varying
part (waveform), y∗bs:

(1)
log(qICA-L) = ybs,L + y∗bs,L,

log(qICA-R) = ybs,R + y∗bs,R.

For notational simplicity, we drop the indices L/R in what follows, keeping in mind that
separate models were trained for both left and right carotid flow. The time-averaged
part of the flow was modelled by a mixed-effects linear model:

(2) ybs = β0 + βhxheight + ε = β0 + βhxheight + σbsω,

using height xheight as a fixed effect to account for the allometric dependence of cardiac
output on body size [4]. The variance σ2

bs was estimated from the residuals of the linear
model fit, and ω ∈ N (0, 1) was the normal distribution. Separate effects were estimated
for the male and female sub-cohorts.

The time-varying part of ICA flow, y∗bs, was modelled as a Gaussian process:

(3) y∗bs = GP(σ, ti;ω).

where {ti}`i=1 were temporal landmarks that characterised the waveform shape. The
flow rates at these landmark points were used to estimate the covariance matrix:

(4) Σ =

[
ΣLL ΣLR

ΣRL ΣRR

]
,

where ΣLR
i,j := cov

[
y∗bs,L(tj), y

∗
bs,R(ti)

]
is the covariance between the log-transformed

left and right carotid waveforms y∗bs,L, y∗bs,R (and similarly for the other sub-matrices).
Again, the covariances were estimated separately for each sex. The between-subjects
variability model fitting process is graphically represented in Fig. 1.

2.3. Statistical modelling of within-subject variability in ICA flow. Within-subject
variability in ICA flow arises mainly due the changes in cardiac output, quantified here
by heart rate (HR) and systolic blood pressure (SBP). These changes are modulated by
the cerebral autoregulation system (CARS) that includes myogenic (pressure-driven),
shear-induced (flow-driven), and metabolic (energy-driven) regulation mechanisms. To
model within-subject variability of carotid flow, we considered a range of arterial BP

www.im2graph.co.il
www.im2graph.co.il


4 MODELLING OF FLOW VARIABILITY IN THE CAROTID ARTERIES

FIGURE 1. Training of the between-subjects flow variability -model (1).

waveforms with different values of HR and SBP and used a mathematical model of the
CARS to generate the corresponding flow rate waveforms.

The CARS model of Mader et al. [13] is a two-element feedback controller, for which
orthostatic stress tests were previously used to identify model parameters in both
middle-aged and elderly volunteers:

(5)



dv1
dt

= −(a+ b+ c)v1(t) + (c− d(t))v2(t) + (a+ b)p(t)

dv2
dt

= −bv1(t)− dv2(t) + bp(t)

d(t) =
bcfaut(t)

Mc p(t)− (a+ c)faut(t)

faut(t) = 2.03 · 10−6p(t)3 − 6.02 · 10−4p(t)2 + 5.94 · 10−2p(t)− 1.95

,

where the model parameters

(6)
a = amλ+ (1− λ)ae, b = bmλ+ (1− λ)be,

c = cmλ+ (1− λ)ce, M = Mmλ+ (1− λ)Me

depended piecewise linearly on age xage:

(7) λ =


1, if xage < 35

75− xage
40

, if 35 ≤ xage ≤ 75

0, if xage > 75

Finally, the flow velocity in the middle cerebral artery (MCA) was obtained as:

(8) vMCA(t) = M(p(t)− v1(t)) + v,



MODELLING OF FLOW VARIABILITY IN THE CAROTID ARTERIES 5

FIGURE 2. Training of the within-subject flow variability -model (5)–(8).

where v corresponds to the time-averaged flow velocity. To translate MCA flow veloci-
ties to ICA flow rates, we assumed a linear relationship between ICA and MCA flows:

(9) qICA = γAICAvMCA,

where AICA was the cross-sectional area of the ICA, and the VMCA/VICA index was
γ = 1.67 + 0.005× xage for women and γ = 2.00 for men, as proposed in [10].

To drive the CARS model, the BP waveform p(t) needed to be specified. For a given
reference HR, we assumed there exists a reference BP signal pref(t) with SBP ps,ref and
DBP pd,ref. The effect of HR and SBP variability on BP was then obtained by rescaling
the reference BP waveform:

(10) p(t; τ, ps, pd) =
pref
(
τref
τ
t
)
− pd,ref

ps,ref − pd,ref
(ps − pd) + pd.

where τ = 60/ HR is the cardiac interval. Since BP waveforms were not available in this
cohort, we used an inverse procedure to recover the reference BP from the ultrasound
flow measurement by solving the least squares problem:

(11) min
pref

∑̀
i=1

| qICA,ref(ti)− CARS(ti; p) |2,

where CARS(ti; pref) is the output of the CARS model at time ti when driving the model
with the reference pressure pref(t), and qICA,ref is the reference ICA flow waveform. The
within-subject variability model fitting process is graphically represented in Fig. 2.

2.4. Study on the effect of exercise on aneurysm flow. To demonstrate the utility
of intra-subject flow variability models, we studied the specific case of flow prediction
in intracranial aneurysms (IAs). Aneurysms are vascular pathologies characterised by
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the incremental growth of a saccular extrusion of the blood vessel that, over time, may
rupture, leading to permanent morbidity or death. The mechanobiological growth and
rupture process of IAs has been linked to changes in wall shear stress (WSS) patterns.
A number of CFD studies [3, 19, 25] have looked at the effect of CBF fluctuations in
WSS patterns, but none to our knowledge have considered the effect of the CARS.
Quantities of interest include time-averaged WSS (TAWSS), oscillatory shear index
(OSI), and transverse WSS (TransWSS):

(12)

TAWSS(x) =
1

Tperiod

∫ T0+Tperiod

T0

|τw(x, t)| dt;

OSI(x) =
1

2

1−

∣∣∣∫ T0+TperiodT0
τw(x, t) dt

∣∣∣∫ T0+Tperiod
T0

|τw(x, t)| dt

 ;

TransWSS(x) =
1

Tperiod

∫ T0+Tperiod

T0

|τw(x, t) · (p̂× n̂)| dt,

where n̂ is the surface normal, and the unit vector p̂ in the direction of the time-averaged
WSS vector can be calculated as:

(13) p̂(x) =

∫ T0+Tperiod
T0

τw(x, t) dt∣∣∣∫ T0+TperiodT0
τw(x, t) dt

∣∣∣ .
To enable comparison of TransWSS across cases, we calculated the relative Tran-
sWSS (rTransWSS) as the TransWSS normalised by the TAWSS at each surface
point [19]. All point-wise quantities were averaged over the aneurysmal sac and used
for population-specific analyses. Previous studies indicate that endothelial regions at-
risk of rupture can be characterised as having low TAWSS but highly fluctuating WSS
(both high OSI and high TransWSS) [15]. As a sudden rise in blood pressure may
trigger the rupture of an aneurysm [23, 24], we investigated whether changes in CBF
experienced in hypertensive conditions play a role in altering the WSS patterns.

To generate a virtual cohort of IAs to test the differences in WSS between rest vs.
exercise, patient-specific vascular surface models (N = 54) were segmented from pre-
viously acquired 3-D rotational angiography images in the @neurIST project [22]. Vas-
cular models were discretised using unstructured volumetric meshes in ANSYS ICEM
v16.2 (Ansys Inc., Canonsburg, PA, USA). Tetrahedral elements with maximum edge
size of 0.2 mm were used and three layers of prismatic elements with an edge size of
0.1 mm were used to create boundary layers. Blood flow in the IA was modelled using
the unsteady Navier–Stokes equations. Blood was assumed to be an incompressible
Newtonian fluid with a density of 1066 kg/m3 and viscosity of 0.0035 Pa·s. To ensure
fully developed flow, the computational domain was extended at the inlet boundary by
an entrance length proportional to the inlet boundary maximum Reynolds number. The
Navier–Stokes equations were solved in ANSYS CFX v16.2 (Ansys Inc., Canonsburg,
PA, USA). The cardiac cycle was discretised in time into 200 equal steps. Element and
time-step sizes were set according to the neurIST processing toolchain where mesh
and time-step size dependecy tests were performed on WSS, pressure, and flow ve-
locity at several points in the computational domain as described by [22].
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No patient-specific flow measurements were available in the @neurIST cohort. In-
stead, the mean waveform (different for men/women) from the Lido cohort was used
as the baseline flow waveform. The baseline waveform was used as inlet boundary
condition to the CFD models of aneurysm flow at rest. For each patient, obtain patient-
specific physiologically-relevant flow waveforms and to enable population-wide com-
parisons, Poiseuille’s law was used to scale the mean waveform such that the time-
averaged WSS was 1.5 Pa at the inlet. We modeled differences between rest and
exercise by increasing the HR from 66 bpm (at rest) to an elevated level of 145 bpm
(during exercise), i.e., an increase by a factor of 2.2 [17]. These values were used as
parameters in the within-subject flow variability model of Sect. 2.3. The baseline pres-
sure waveform was determined for each case by solving problem (11). After solving the
inverse problem, the systolic BP was correspondingly increased by a factor of 1.3 [17]
in formula (10) to simulate effects of exercise and used to drive the CARS model and
obtain the ICA waveform. The ICA waveforms where then used as inlet boundary con-
dition to the CFD models of aneurysm flow during exercise. Zero-pressure boundary
conditions were imposed at all outlets.

3. RESULTS

3.1. Cohort statistics for flow variables. Summary statistics of the Lido cohort are
presented in Table 1. Differences between the sexes were observed in body size, left
ventricular volume/mass, and carotid artery diameters. Carotid flow velocity waveforms
were extracted from both ICA-L and ICA-R for N = 92 study participants. For N = 11
participants carotid examination failed in either one or both sides and no signal could be
analysed. The log-transformed carotid flow rates after subtracting the time-averaged
mean flow are presented in Fig. 3, for men and women separately. The coefficient of
variation in the time-averaged flow was 34% for ICA-L and 39% for ICA-R, indicating
large between-subjects variability. Qualitative evaluation of the cohort mean waveforms
indicated that a more prominent dicrotic notch was present in males than in females.
It is clear that using a single “normative” waveform to characterise this cohort will not
produce credible CFD simulations.

3.2. Between-subjects flow variability -model. The mean flow rate of each carotid
waveform was computed and the values used to fit the log-linear mixed effects model
for ybs. The model fit is represented graphically in Fig. 4. The estimated effects for men
and women in the ICA-L and ICA-R are given in Table 2. The fixed effect for height was
statistically significant in women (βh,L = 4.165, p < 0.001 and βh,R = 2.944, p = 0.01), but
not in men (βh,L = −0.224, p = 0.0825 and βh,R = 0.200, p = 0.886). In previous studies,
cardiac stroke volume was associated with height following an allometric scaling law
with power βh = 2.04 (in adults) [4].

After subtracting the time-averaged component from the log-transformed ultrasound
signals, ` = 18 landmark points were selected on the waveform. Manual adjustment
was required to ensure the positive definiteness of the covariance matrix (4). Once the
Gaussian process models were trained for both men and women, they were used to
generate a virtual waveform sample of 103 cases. The statistics of this virtual cohort
were compared to the original cohort by applying the Kolmogorov-Smirnov -test (Table
3). The distribution of flow parameters in the resulting virtual cohort was statistically
indistinguishable from the original cohort, indicating successful model training.
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TABLE 1. Demographics and carotid measurements in an elderly cohort.
Differences between the sexes are exhibited in body size and mass,
left ventricle size and mass, and carotid artery diameters. Univariate
p-values were computed by one-way ANOVA. Statistical significance with
p < 0.05 denoted by ∗ and with p < 0.001 denoted by ∗∗.

Demographics Male Female p-value
N 41 62
Age [y] 73 (9) 74 (6) 0.691
Height [cm] 174 (7) 161 (7) < 0.001∗∗

Weight [kg] 80 (13) 65 (12) < 0.001∗∗

Body-mass index 26.5 (3.3) 25.0 (3.8) 0.041∗

Carotid arteries
Intima-media thickness CCA-L [mm] 0.87 (0.20) 0.83 (0.18) 0.302
Intima-media thickness CCA-R [mm] 0.88 (0.21) 0.84 (0.17) 0.329
Mean time-averaged velocity ICA-L [cm/s] 17.5 (3.9) 19.6 (5.3) 0.031∗

Mean time-averaged velocity ICA-R [cm/s] 18.2 (4.8) 18.9 (5.1) 0.491
Mean time-averaged velocity CCA-L [cm/s] 21.5 (6.4) 20.8 (4.9) 0.558
Mean time-averaged velocity CCA-R [cm/s] 21.5 (6.1) 19.6 (5.2) 0.101
Mean time-averaged velocity ECA-L [cm/s] 16.3 (5.2) 14.9 (4.2) 0.144
Mean time-averaged velocity ECA-R [cm/s] 16.6 (5.7) 16.3 (5.4) 0.763
Diameter ICA-L [mm] 7.1 (1.0) 6.6 (0.9) 0.009∗

Diameter ICA-R [mm] 7.0 (1.0) 6.5 (0.9) 0.009∗

Diameter CCA-L [mm] 7.0 (0.7) 6.6 (0.6) 0.001∗

Diameter CCA-R [mm] 7.1 (0.8) 6.7 (0.6) 0.002∗

Diameter ECA-L [mm] 5.0 (0.5) 4.6 (0.6) 0.002∗

Diameter ECA-R [mm] 4.9 (0.5) 4.6 (0.6) 0.010∗

Mean time-averaged flow rate ICA-L [ml/min] 429 (135) 411 (149) 0.526
Mean time-averaged flow rate ICA-R [ml/min] 437 (169) 382 (148) 0.087

3.3. Study on the effect of exercise on aneurysm flow. Flow variability in the host
artery (either the internal carotid, middle cerebral, or posterior communicating artery)
during rest and exercise was measured with two different indicators: mean flow (FLOW)
and pulsatility index (PI). The variabilities of these indicators as well as the WSS-related
quantities measured in the aneurysm are reported in in Table 4. Due to the effects of
the CARS, FLOW only fluctuated moderately (< 10%) even when the HR was increased
considerably. Meanwhile, the PI increased by over 100% in certain cases. In practice,
all WSS-related indicators (TAWSS, OSI, rTransWSS) experienced on average an in-
crease when moving from rest to exercise (Table 4). By far the largest increase was
observed in OSI, which more than doubled on average during exercise. rTransWSS
was considerablly less sensitive to flow fluctuations, being only somewhat more sen-
sitive than TAWSS. In our previous study [19] TransWSS was similarly found to be a
smoother measure of WSS fluctuations.

Changes in the absolute values of WSS and OSI might have relatively little physio-
logical meaning unless critical thresholds are met for upregulating atheroprotective (for
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TABLE 2. Parameters of the mixed effects model for ybs, their 95%-
confidence intervals, and p-values. Height had a statistically significant
effect in women but not in men. Statistical significance with p < 0.05
denoted by ∗ and with p < 0.001 denoted by ∗∗.

Model parameter, men Value Confidence interval p-value
Time-averaged flow rate ICA-L, β0 6.077 (4.952− 7.201) < 0.001∗∗

Time-averaged flow rate ICA-L, βh −0.224 (−2.242− 1.793) 0.825
Time-averaged flow rate ICA-R, β0 5.875 (4.330− 7.421) < 0.001∗∗

Time-averaged flow rate ICA-R, βh 0.200 (−2.573− 2.973) 0.886
Stdev of residuals ICA-L, σL 0.275
Stdev of residuals ICA-R, σR 0.378

Model parameter, women Value Confidence interval p-value
Time-averaged flow rate ICA-L, β0 3.986 (2.982− 4.990) < 0.001∗∗

Time-averaged flow rate ICA-L, βh 4.165 (2.052− 6.277) < 0.001∗∗

Time-averaged flow rate ICA-R, β0 4.506 (3.452− 5.559) < 0.001∗∗

Time-averaged flow rate ICA-R, βh 2.944 (0.727− 5.160) 0.010∗

Stdev of residuals ICA-L, σL 0.305
Stdev of residuals ICA-R, σR 0.320

TABLE 3. Flow parameters measured by ultrasound versus simulated
by the between-subjects variability model (1), p-values computed by the
Kolmogorov-Smirnov -test. Statistical significance with p < 0.05 denoted
by ∗ and with p < 0.001 denoted by ∗∗.

Flow parameter, women Ultrasound Model (1) p-value
Time-averaged flow rate ICA-L [ml/min] 433 (146) 438 (159) 0.953
Time-averaged flow rate ICA-R [ml/min] 409 (135) 414 (149) 0.964
Pulsatility index ICA-L 1.14 (0.24) 1.16 (0.24) 0.475
Pulsatility index ICA-R 1.20 (0.27) 1.22 (0.24) 0.146
Resistivity index ICA-L 0.65 (0.07) 0.65 (0.07) 0.483
Resistivity index ICA-R 0.66 (0.07) 0.67 (0.07) 0.277

Flow parameter, men Ultrasound Model (1) p-value
Time-averaged flow rate ICA-L [ml/min] 424 (118) 425 (119) 0.992
Time-averaged flow rate ICA-R [ml/min] 454 (177) 455 (175) 0.906
Pulsatility index ICA-L 1.29 (0.30) 1.31 (0.27) 0.315
Pulsatility index ICA-R 1.29 (0.27) 1.30 (0.25) 0.884
A Resistivity index ICA-L 0.68 (0.07) 0.68 (0.06) 0.850
Resistivity index ICA-R 0.68 (0.07) 0.69 (0.06) 0.938
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FIGURE 3. Log-transformed ICA flow waveforms in the study cohort in
males (left column, N = 38) and females (right column, N = 52) after
subtracting the temporal mean from each signal. Cohort mean waveform
overlaid in red.
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FIGURE 4. Mixed-effects log-linear model for temporal mean flow in the
ICA-L (left) and ICA-R (right). Separate models are trained for males and
females. Shaded area represents the 95% confidence intervals.

high TAWSS) or inflammatory pathways (low TAWSS and high OSI) in the endothe-
lium. Therefore, we also studied areas of low TAWSS (defined as TAWSS < 0.4 Pa)
and high OSI (defined as OSI > 0.4) relative to the total area of the aneurysmal sac.
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FIGURE 5. Gaussian process model for ICA flow fluctuation term in
males (left column, N = 38) and females (right column, N = 52). Process
mean waveform and landmarks overlaid in bold, variability bounds in gray.

Their changes are also reported in Table 4. It was observed that relative area of low
TAWSS decreased on average, while the relative area of high OSI increased. To un-
derstand better the interplay of TAWSS and OSI, in Fig. 6 we present the case of a
41-year-old woman with a posterior communicating artery aneurysm. In this case, a
large increase in host vessel pulsatility (∆PI = 102%) lead to a corresponding large
increase in TAWSS (∆TAWSS = 39%) and OSI (∆OSI = 129%). It should be noted
that OSI tends to be a spatially concentrated measure of flow variability, so that even
a large increase in OSI only effects a small part of the aneurysmal wall. At the same
time, while TAWSS increased in most regions it remained low in the region where OSI
was simultaneously elevated. Thus the actual change in rupture risk should be evalu-
ated based on a combined informations about TAWSS and WSS pulsatility indicators,
including analysis of the spatial patterns of WSS.

Linear correlations between changes in flow vs. changes in WSS are reported in
Table 5. It was found that, on average, TAWSS increases were associated incresses in
both FLOW and PI, while the correlations between flow and OSI/rTransWSS changes
were not statistically significant.

4. DISCUSSION

Computational fluid dynamics modelling is a promising tool for virtual treatment plan-
ning in cardio- and cerebrovascular disease, but requires patient-specific boundary
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TABLE 4. Within-subject variability of flow- and WSS-related quantities in
N = 54 intracranial aneurysms. Values given are cohort means (std. dev.
in parentheses).

Indicator Rest Exercise Relative difference
FLOW [ml/min] 240 (99) 245 (109) 2.00% (2.22%)
PI 1.18 (0.00) 2.13 (0.16) 80.3% (13.5%)
TAWSS 4.78 (4.17) 5.78 (4.93) 27.2% (19.6%)
OSI 0.027 (0.023) 0.053 (0.035) 124.0% (84.1%)
rTransWSS 0.168 (0.069) 0.240 (0.084) 48.1% (29.3%)
rArea Low TAWSS [%] 12.87 (22.07) 7.42 (15.04) -58.6% (27.8%)
rArea High OSI [%] 2.30 (2.60) 5.09 (5.37) 165% (143%)

TABLE 5. Correlation coefficients between flow variability in the host
artery (ICA) and WSS variability in N = 54 intracranial aneurysm.

Comparison Pearson’s ρ p-value
∆FLOW vs. ∆TAWSS 0.277 0.043∗

∆FLOW vs. ∆OSI −0.132 0.340
∆FLOW vs. ∆rTransWSS −0.100 0.473
∆FLOW vs. ∆rAreaLowTAWSS −0.276 0.069
∆FLOW vs. ∆rAreaHighOSI −0.064 0.649
∆PI vs. ∆TAWSS 0.430 0.001∗

∆PI vs. ∆OSI −0.200 0.148
∆PI vs. ∆rTransWSS −0.225 0.102
∆PI vs. ∆rAreaLowTAWSS −0.183 0.237
∆PI vs. ∆rAreaHighOSI −0.101 0.469

FIGURE 6. Example of flow in a posterior communicating artery
aneurysm of a 41-year old female where a large increase in host ves-
sel pulsatility (∆PI = 102%) leads to corresponding large increases in
TAWSS (∆TAWSS = 39%) and OSI (∆OSI = 129%).

conditions to achieve results that are relevant to the specific patient’s physiology. If nor-
mative flow boundary conditions are used instead, derived quantities of flow, such as
WSS, may incur large errors and uncertainties. In the context of intracranial aneurysm
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flow modelling, previous meta-analysis [18] showed that the use of patient-unspecific
boundary conditions leads to a moderate-sized effect (Hedges’ g = 0.30) when evaluat-
ing WSS patterns on the aneurysmal endothelium. This uncertainty can be multiplied
by the presence of within-subject flow variability. However, in clinical practice only a
single flow measurement is usually performed and no estimate of systemic variability
is available to guide the modeller as to the variability in the flow measurements.

We developed a within-subject flow variability model that mimics the response of the
cerebral autoregulation system to cardiac output variability. This model can be used
to extend a single baseline carotid flow measurement to a range of CBF experienced
during the person’s daily activities. As a concrete example, we performed CFD simu-
lations in 54 intracranial aneurysms where the intra-subject flow variability model was
used to generate waveforms at rest and during physical activity. Our results showed
that physiological changes in CBF during increased physical activity may induce fluctu-
ations an order of magnitude higher in certain WSS-related quantities, such as OSI (a
2% mean increase in flow lead to a 124% mean increase in OSI in our virtual cohort).
This indicates that OSI may be too sensitive to flow uncertainty to be reliably used
for rupture-risk evaluation. A partial recipe to this problem is to use alternative WSS
indicators that are robust to flow fluctuations. Specifically, we showed that TransWSS
was less sensitive to flow fluctuations than OSI, so that if both indicators are equally
informative for the rupture risk then TransWSS should be preferred over OSI.

Sometimes it is simply not feasible to perform patient-specific flow measures in all
the relevant locations of the vascular tree. In such cases, using normative flow val-
ues may be a necessity, but the uncertainty created by missing patient-specific mea-
surements should be properly quantified. Recent studies [5, 19, 25] have looked at
between-subjects cerebral flow variability by combining data and mathematical mod-
elling to quantify the CBF uncertainty. We developed a data-driven between-subjects
flow variability modelfor ICA flow in elderly dementia patients and age-matched con-
trols. The model was an extension of our previously developed model [19] but also
included a fixed-effects model using height and sex as predictors for time-averaged
mean flow. By training separate models for men and women, sex-specific differences
of the cerebrovascular physiology can be studied.

Besides patient-specific models, a separate paradigm that has arisen lately is what
we call “population-specific modelling”. Instead of modelling the flow in a single patient,
we generate a virtual population of waveforms that matches the statistical distribution of
flow observed in a real patient cohort. The utility of virtual populations lies in the idea
of virtual in silico trials, where medical treatments and devices can be tested using
computer simulation. This can help reduce the size of actual clinical trials. By com-
bining vascular surface models from a real cohort of patients and a between-subjects
flow variability model, we can generate virtual chimera patients that extend the cohort
beyond that which would be available with purely patient-specific data collection. It has
been acknowledged that virtual patient models must incorporate both patient variability
and the model uncertainty to augment clinical trials [7]. Our model provides one of the
necessary ingredients to successful virtual trials of cerebrovascular interventions.

Limitations: Our data-driven model for between-subjects CBF variability was based
on ∼ 100 participants from an ethnically homogeneous cohort (retirees from an island
community in the Mediterranean). As data from larger, cross-sectional population stud-
ies become available (e.g. the UK Biobank project [16]), the models can be retrained for
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increased coverage and to achieve actual population-specific, not just cohort-specific
models. The within-subject CBF variability was controlled by a simple autoregulation
model that only considers short-term effects. Long-term response to chronic disrup-
tions in CBF, such as cardiac disease, should be modelled using a more advanced
autoregulation model.
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