Background

- Mini-mountain marathons are longcourse score orienteering races over hilly terrain.
- Checkpoints carry scores reflecting their remoteness
- Any number can be navigated in any order
- Not possible to visit all checkpoints
- Late return is penalized via an escalating points deduction

Finding the best route is an NP-hard combinatorial optimization problem known as the Orienteering Problem

Winner's route choice

Peter J. Dodd (Sheffield)
September, 2015

Questions

We considered split data from the $1^{\text {st }}$ round of the Rab 2015 event series.

We wondered:

- Did top finishers take similar routes?
- Was speed or route-planning acumen more important?
- How close to optimal is route choice by experienced competitors?

Route choices: position 2-5

Analysis

- We modelled the split, $T_{i j}$, over leg i over competitor j as

$$
T_{i j}=d_{i} / s_{j}
$$

where d_{i} is a notion of distance for the leg, and s_{j} is a notion of speed for the competitor.

- We used linear regression on the logsplits to infer the relative speed of competitors and leg lengths.
- We encoded possible route choices as the sequence appearing between 1 and N in permutations of $1, \ldots, \mathrm{~N}$.
- We wrote a score function based on the points accrued minus the penalty associated with the total route duration.
- We used a genetic algorithm to search through the space of permutations to optimize the score for the winner's speed.

Above: all legs run
Below: rank vs speed

Discussion

- Top routes are surprisingly varied (see above)
- Rank and speed related but with increasing scatter due to mishap (see left)
- Genetic algorithm did improve winnier's score; but only by $\sim 7 \%$ (see below)

But...

- Some legs missing, arguably irrelevant ones
- Within-leg navigation and speed confounded
- Relatively flat course

