



# DIAGNOSTIC ACCURACY OF EARLY BIOMARKERS FOR ACUTE CORONARY SYNDROME (ACS)

# C Carroll, S Goodacre, M Al Khalaf, J Leaviss, J Wang & P Collinson

Health Economics and Decision Science (HEDS), School of Health and Related Research (ScHARR), University of Sheffield, UK

#### **OBJECTIVES**

**Background**: Current practice for suspected ACS involves troponin testing 10-12 hours after symptom onset to diagnose myocardial infarction (MI)

**Aim**: To estimate the diagnostic accuracy of early biomarkers for MI to determine if an earlier, accurate decision was possible

Rationale: Early discharge of patients with no or low risk of ACS will result in cost savings and reduced healthcare and patient burden

### **METHODS**

- Systematic review of diagnostic cohort studies of patients presenting with suspected ACS
- Intervention: Presentation comparison of early troponin I and T; Hearttype Fatty Acid Binding Protein (HFABP); ischaemia modified albumen (IMA) and myoglobin
- Reference or Gold standard: Universal definition of MI (troponin at 10-12 hours)
- Meta-analysis was conducted using Bayesian Markov chain Monte
   Carlo simulation

#### **RESULTS**

Compared with the gold standard, sensitivity and specificity at the 99th percentile threshold were:

| Biomarker               | Sensitivity (%) | Specificity (%) | Number of studies in analysis |
|-------------------------|-----------------|-----------------|-------------------------------|
| Troponion T             | 77              | 93              | 10                            |
| Troponin I              | 80              | 91              | 4                             |
| HFABP<br>(quantitative) | 81              | 80              | 8                             |
| HFABP<br>(qualitative)  | 68              | 92              | 9                             |
| IMA                     | 77              | 39              | 4                             |
| Myoglobin               | 62              | 83              | 14                            |

# **KEY MESSAGES**

- Early troponin I and T and HFABP have modest sensitivity and specificity for MI at presentation, when compared with the gold standard
- Estimates are subject to substantial uncertainty and primary data are subject to substantial heterogeneity.
- High sensitivity troponin assays appears to be the most cost-effective strategy at presentation, but more research on this assay is required

Figure 1: Meta-analysis of studies of troponin I

| Study                    | TP  | FP  | FN | TN   | Sensitivity       | Specificity       | Sen       | Sensitivity |             |       | Specificity |         |          |  |  |
|--------------------------|-----|-----|----|------|-------------------|-------------------|-----------|-------------|-------------|-------|-------------|---------|----------|--|--|
| Amodio 2006              | 85  | 65  | 25 | 341  | 0.78 [0.70, 0.85] | 0.84 [0.81, 0.88] |           | <b>—</b>    |             |       |             |         | -        |  |  |
| Apple 2008a              | 138 | 78  | 19 | 310  | 0.88 [0.82, 0.92] | 0.80 [0.76, 0.84] |           | -           | <b>-</b>    |       |             | -       |          |  |  |
| Apple 2008b              | 36  | 52  | 13 | 270  | 0.75 [0.63, 0.85] | 0.84 [0.80, 0.88] |           | <del></del> |             |       |             | -4      | -        |  |  |
| Apple 2009               | 18  | 49  | 7  | 383  | 0.75 [0.58, 0.87] | 0.89 [0.86, 0.92] |           |             |             |       |             |         |          |  |  |
| Body 2011a               | 54  | 23  | 75 | 553  | 0.44 [0.35, 0.52] | 0.96 [0.94, 0.97] |           | _           |             |       |             |         |          |  |  |
| Charpentier 2010         | 56  | 8   | 43 | 570  | 0.57 [0.48, 0.67] | 0.98 [0.97, 0.99] |           | <del></del> |             |       |             |         |          |  |  |
| IIva 2009                | 105 | 0   | 29 | 158  | 0.78 [0.70, 0.84] | 0.99 [0.97, 1.00] |           | -           |             |       |             |         | 4        |  |  |
| Keller 2009              | 375 | 138 | 38 | 1267 | 0.90 [0.87, 0.93] | 0.90 [0.89, 0.92] |           | +           | •           |       |             |         | •        |  |  |
| Reichlin 2009b           | 109 | 48  | 14 | 547  | 0.88 [0.82, 0.93] | 0.92 [0.90, 0.94] |           | -           | -           |       |             |         | •        |  |  |
| Pooled effect            |     |     |    |      | 0.77 [0.63, 0.87] | 0.93 [0.85, 0.97] |           | •           |             |       |             |         | <b>•</b> |  |  |
| <b>Predictive effect</b> |     |     |    |      | 0.77 [0.29, 0.96] | 0.93 [0.46, 1.00] |           |             | <b>&gt;</b> |       |             |         |          |  |  |
|                          |     |     |    |      |                   |                   |           | 1 1         |             |       |             | 1 1     |          |  |  |
|                          |     |     |    |      |                   |                   | 0 0.2 0.4 | 0.6 0.8     | 1           | 0 0.2 | 0.4         | 0.6 0.8 | 1        |  |  |

Figure 2: Meta-analysis of studies of troponin T

| Study                            | TP  | FP  | FN  | TN   | Sensitivity                            | Specificity       |   | Sensitivity |     |     | S        | Specificity |   |     |     |     |          |             |
|----------------------------------|-----|-----|-----|------|----------------------------------------|-------------------|---|-------------|-----|-----|----------|-------------|---|-----|-----|-----|----------|-------------|
| Body 2011b                       | 95  | 37  | 32  | 549  | 0.75 [0.68, 0.82]                      | 0.94 [0.92, 0.95] |   |             |     | _   | -        |             |   |     |     |     | +        | -           |
| Christ 2010                      | 18  | 22  | 2   | 95   | 0.86 [0.71, 0.96]                      | 0.83 [0.75, 0.89] |   |             |     |     |          | _           |   |     |     |     | <b>—</b> |             |
| Keller 2009                      | 300 | 111 | 113 | 1294 | 0.73 [0.69, 0.77]                      | 0.92 [0.91, 0.93] |   |             |     | -   | •        |             |   |     |     |     |          |             |
| Reichlin 2009b                   | 102 | 42  | 21  |      | 0.82 [0.75, 0.88]                      | -                 |   |             |     |     | -        |             |   |     |     |     | 1        | •           |
| Pooled effect<br>Predictive effe | ct  |     |     |      | 0.80 [0.61, 0.92]<br>0.80 [0.33, 0.97] |                   |   |             |     |     | <b>+</b> | •<br>•      |   |     |     |     |          | <b>&gt;</b> |
|                                  |     |     |     |      |                                        |                   |   |             |     |     |          |             |   |     |     |     |          | $\neg$      |
|                                  |     |     |     |      |                                        |                   | 0 | 0.2         | 0.4 | 0.6 | 0.8      | 1           | 0 | 0.2 | 0.4 | 0.6 | 8.0      | 1           |



# CONTACT

Dr Chris Carroll,
Health Services Research,
School of Health and Related
Research
University of Sheffield, U.K.
Email: s.goodacre@sheffield.ac.uk

# **REFERENCES**

- Goodacre S, Thokala P, Carroll C et al. Systematic review, meta-analysis and economic modelling of diagnostic strategies for suspected acute coronary syndrome, Health Technology Assessment, 2013.
- Carroll C, al Khalif M, Stevens J, Leaviss J, Goodacre S, Collinson P. Heart-type fatty acid binding protein as an early marker for myocardial infarction: Systematic review and meta-analysis, Emergency Medicine Journal (epub ahead of print May 16, 201; 10.1136/emermed-2012-201174)







School Of