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ABSTRACT. This work proposes an implementation example of two tuned mass dampers @MDM)
a reduced scale two storey building. The TMD, in which the damping is magetchusted without
contact, is a laboratory prototype built in CARTIF (Spain). This TMD cassism a one degree of free-
dom system formed by a permanent magnet (mass) fixed to a flexible linkdyagnd an aluminium
plate at an adjustable distance to the magnet (damping). The tuning of the isid@sed out by consid-
ering the passive system as a feedback controller. The system id¢iotifiaad the experimental results
show the validity of theoretical approximations and the design criterions.
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1 INTRODUCTION

Structures subjected to excitations like earthquake ground motions, humaredhsibrations or
machinery may produce structural damages (or even collapse) andesduility limit state problems.
Passive, semi-active and active vibration controls have been pibasspossible solutions to reduce
the vibration level at civil structures such as bridges, multi-storey buitdorgslender floor structures,
among others [1].

Tuned Mass Dampers (TMD), which can be used for passive and s¢ine-@ontrol strategies,
improves the vibration response of a structure by increasing its dampingr{eegy dissipation) aror
stiffness (i.e. energy storage) through the application of forces genématesponse to the movement
of the structure [2]. Recently, flerent TMD implementations have been proposed in order to improve
the tuning of mechanical parameters. For example, magnetic TMDs haveubedrdue to its linear
behaviour and since its damping ¢eient can be easily and finely calibrated [3, 4]. A pendulum with
an adjustable length is used to tune the resonance of a Smart TMD in [5]h wehicsed for a semi-
active control strategy. Other example is found at [6], where a TM[2dbas shape memory alloys and
eddy currents is utilized for implementing two adaptive control strategies.eloake of structures with
spatially distributed and closely spaced natural frequencies, the TMBrd@sly not be obvious because
Den Hartog's theory [7] may not be applied due to the existence of a coupditween the motions of the
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vibration modes of the structures and the used TMD’s [8]. Multi storey mgklare good examples of
structures with spatially distributed and closely spaced natural freqeemaeexample, Greco et al. [9]
propose a robust optimum design of tuned mass dampers installed on muteddgreedom systems
subjected to stochastic seismic actions. The robust design is formulated #s@hjective optimization
problem, in which both the mean and the standard deviation of the perfornmaleseare simultaneously
minimized. Other similar examples can be found at [10] and [11]; howeieulation results are only
presented in aforementioned references.

In this work, a system composed of two magnetic TDM devices based ontilecanbeam are
implemented in a reduced scale two floor building [12]. The tuning of the TMfarpaters is carried
out by considering this passive vibration control (PVC) from the actibeeation (AVC) control point
of view (see reference [13]). This simplifies the design of this PVC bexdlne coupling between
the two main vibration modes is not a problem (as in Den Hartog’s theory).dditian, this work
designs and implements a magnetic TDM tuning based on minimizingithaorm of the frequency
response function (FRF) between the acceleration of the secondfiidtiheacceleration of the ground.
Simulation and experimental results are obtained to show: i) the advantagesazfnetic TMD which
can be easy tuned after an experimental identification, ii) the validation of tdelrapproximations for
magnetic TMDs and iii) the design of TMDs can be carried out from and Ad@tpof view, which
is an advantage compared with Den Hartog's theory for structures witmahdtaquencies spatially
distributed and closely spaced.

2 MODELING AND EXPERIMENTAL IDENTIFICATION

The generalized framework to design robust TMD proposed in [13]nsidered in this work. This
framework is simplified and particularized to a two storey building, which malesxblanation easier
to follow than [13] for this particular application.

The model of the magnetic TMD’s is considered as [3], i.e. drag forcesiged by magnetic
dampers are assumed to be proportional to velocity. This assumption is deatehgvith experimental
identification of the linear and time invariant model.

Fig. 1 right shows the magnetic TMD prototypes used in this work. Note thaeth®D’s can be
fixed to the two storey building with the structure (4). The magnetic TMD is tursefbliows: i) the
rigidity is changed by the link (1), ii) the mass is varied by adding standaradhbiexto the magnet (2)
and iii) damping is configured by moving the plate (3) with respect to the maghet (

2.1 Two storey building

The two storey building can be modelled as a two degree of freedom systerrig. (2) left), where
the mass is concentrated at each floor andmy), k; andc; are, respectively, the first floor Stiess
and damping cdécient (relative to the ground) arld andc; are, respectively, the second floor linear
stiffness and damping cfiesient (relative to the first floor).
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Figure 1: Two storey building (left) and details for the magnetic TMDs (right).
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Figure 2: Two storey building (left) and TMD (right) models.
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If the applied forces in each floofy(and f,) and the acceleration of the basg)(are considered as
inputs, the diferential equation of the building can be represented as follows:

M+ CU + Ku = M | ] + 1, 1)
ap
where
_ (M 0 _|Ge+C —C _ k1+k2 —k2 _ U1 _ fl
L S s B e B R @

This model considers nodal coordinates or real displacements. Tiesrsgan be represented in modal
coordinates by obtaining the eigenvectors (mode shapes) and eiganfredtigral frequencies):

(-wM +K)¢i =0, ®3)
where the eigenvectors can be grouped in the following matrix:
11 ¢21
D = = S 4
[¢1 ¢2] [¢12 ¢22] )

whereg; j is the j" component of th&" mode shape. The relationship between nodal and modal coordi-
nates iau = ®z. Then, after having pre-multiplied bp' in order to uncouple the equation system, Eq.
(1) in modal coordinates is

O M®ij + ®TCBi + OTKDy = —®TM Z‘; +@Tf, (5)

The state space state model can be deduced from Eq. (5) by takingstetéhspace variables, the modal
coordinatessf) and their first derivativesp). Thus, if®@"M® = M, ®'C® = C and®'K® = K, the
linear diferential equation of the state space vector is

| _[ Q22 l2 (] _[. G2 [[a], [ 022 ] ()
i T |-MIK -MIC||p| [MTl@TM||a| [Ml@T|”
and the output equation is
yl]:[‘fl]Jr ab]:[-cbl\?l—lli ~oN 1] [’..7 + oN T, @)
Y2 uz ap |
where®M1®™M = I, and
) ;
~_1 > |wg 0 ~ |21 0
M _|2,K_[0 w%],c_[ 0 2w (8)

Note thaty; andy, are accelerations that can be measured with accelerometers mountet adirs
second floor, respectively.

Once the system model is established, the following step is the experimenti#iédéon. A chirp
signal between 0.5 Hz and 15 Hz with a duration of 300 seconds was afiptieelbase of the structure
(ap). The FRF of the system, whekd, mode is considered, and the FRF of the model adjusted by
minimizing the means square error is shown at Figs. (3) and (4).
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Figure 3: Structure identification example (first floor).
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Figure 4: Structure identification example (second floor).
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2.2 Magnetically damped TMD

The TMD can be modelled as a one degree of freedom system (see FHght, wheremy; is the
massk;j andcj are the TMD linear stiness and damping ctiient of thej™ TMD relative to thei®h
floor.

If the accelerations of the basa,] andit” floor are considered as inputs, théeliential equation of
the TMD can be represented as follows:

My jUtj + Crjlkj + K jUj — CojUi — ke jUi = —My jap. )
The force applied by the TMD to tH# floor is:

fij = kej (Uej — )+ Cej (O — O) = K jlnij + Cojij. (10)
If the relative displacement betwee}ﬁ‘ TMD and it floor is defined askjj = Uyj — U, the transfer

function between the acceleration measured by an accelerometer pliédlbat (denoted above ag)
anduy; from Eq. (9) is as follows:

rr]t’j
M jS% + CpjS+ ki j
Therefore, from Egs. (10) and (11) can be deduced the followimgfea function of the TMD

Urij(s) = - Yi(s). (11)

th,ja)t’j S+ wEJ

WICTALT/ AR
. £+ 2§t,j(/.)t,jS+ W

Fii(s) = - i
t’J() mt,j82+Ct,jS+ kt,j !

5 Yi(9), (12)
tj

wherewy ; andé j are, respectively, the natural frequency and damping ratio gftAaVID as an isolated
system.

The linear time invariant (LTI) model defined in Eq. (12) is identified by olajrihe initial con-
ditions and the values a@f; ; andé&; j that minimizing the least square error of an impact response. An
example of the input signal considered in the system identification is shokig.g8. Note that only the
interval from 0.5 to 1.2 seconds is used for the system identification. heatso observed from Fig. 5
that the model identification is pretty good and the hypothesis of LTI model éomidgnetic TMD can
be considered.

A set of system identifications was carried out to know the relationship leetives damping ratio
and distance between the magnet and the moving plate. Table 1 shows thecakgmifof the magnetic
TMD shown at Fig. 1, denoted a§ TMD.

3 GENERAL CONTROL STRATEGY

The state space model of the two storey building defined at Egs. (6) aaddhe transfer function
of the magnetically damped TMD defined at Eq. (12) can be joint in a clossitiotdoop (see Fig. 6).
Note that the output force of each TMD is one of the inputs of the buildingdttition, the input of each
TMD is the output measured with one accelerometer placed at each floor.

6
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Figure 5: TMD identification example—¢) time response of the TMD when an impact is applied to the
tip mass. (—) Output of the system model when the identified initial conditionscarsidered.

The general control scheme of Fig. (6) also includes the acceleratibe bhsedy,) and the param-
etersa11, @12, @21 andazo. This parameters allow us to place tfi& TMD on it floor (@ij = 1). That
is, if the configuration is TMDQ at second floor and TMPat first floor, the values are;; = 0, @12 = 1,
a21 = 1 andaz, = 0. Note that any TMD cannot be placed in both floors at the same time. Dherdie
variablesy;j are treated as boolean variables satisfying the consteaints a1 = 1 anda12 + a2 = 1,
which are defined in the optimal control designs.

4 OPTIMAL CONTROL DESIGN METHODOLOGY

The optimal control design methodology consists on considering the TMBslased loop control
problem (like in [13]). In this work, two design criteria are considerethe Tirst one finds the value
of the vectolV = [a11, @12, @21, @22, Wi 1, Wi 2, €11, €. 2] that minimizes the acceleration of one floor (i.e.,
minimize the value oH., norm of the FRF betweey anday). The second one finds the optimal value
of V that minimizes the maximum of the mode shapes of one vibration mode (i.e., the maxituem va
of ¢).

The minimization is carried out by using the built-in functiéminsearch of MATLAB. The file
containing the objective function considers the four possible combinatibng ¢o find the optimal
values ofw 1, w2, &1, &.2] which minimize, as mentioned, th¢,, norm or the maximum value @f;.

In addition, the values afn, 1 andm 2 are defined because the part (2) of each TMD (see Fig. 1 right)
is fixed. In addition, the value of the objective variable is penalized Whepn wt 2, &1, &.2] cannot be
implemented in practice (i.e., maximum valuesdgr, & 2 and non negative values fox 1, wy 2, &1 and

&t2).
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wy (rads) | & u(0) (nys) | w(0) (m)
11.2586 | 0.0406| 0.0005 -0.0041
11.2548 | 0.0457| 0.0042 -0.0045
11.2793 | 0.0566| 0.0040 0.0330
11.2670 | 0.0672| -0.0374 0.0031
11.2727 | 0.0811| -0.0400 0.0340
11.2697 | 0.0981| -0.0312 0.0035
11.2937 | 0.1221| -0.0423 0.0035
11.2953 | 0.1538| -0.0348 0.0031
11.4047 | 0.2320| -0.0278 0.0046
11.5069 | 0.3143] -0.0273 0.0043
11.3660 | 0.5147| -0.0304 0.0047

Table 1: System identification of the device Tl Bhown at Fig. 1.

5 SIMULATION AND EXPERIMENTAL RESULTS

This section show an example of the design explained in Section 4. The wdlogs andm are
fixed in 0.107 kg and 0.072 kg respectively. In addition, the model definEds. (6) and (7) is updated
for the four possible configurations of1, a12, @21 andaz; to include the weight of the frame (part (4))
of each TMD. The algorithm canfi@r several “good configurations” depending on the success of the
fminsearch function.

When minimizing theH., norm of the FRF between the acceleration of the second fjgpafd the
acceleration of the groundy), two (local) solutions are1; = 0, @12 = 1, a1 = 1 andaz2 = 0 (i.e.,
TMD1 placed at second floor and TMIplaced at first floor) and1; = 0,12 = 1,a21 = 0 andazy = 1
(i.e., both TMDS placed at the second floor). The simulation results for kestigils are shown in Figs.
7 and 8. The values of TMDs parameters areos) = 1138 rads, w1 = 32.32 rads, &1 = 0.0595 and
&2 = 0.0503 for Design 1 and iipy 1 = 10.71 rads, w1 = 2329 rads, &1 = 0.0598 andt;» = 0.0525
for Design 2, which can be implemented in practice. Note that the maximum vatbe BRF between
Y2 anday (i.e., Hy,) is approximately the same for both designs (about 19.4 dB in Fig. 8). Ndtéhtha
reduction achieved with TMDs is approximately 16 dB in simulation (i.e., the aat&darof the second
floor with TMDs is 6.3 time less than without them). However, Fig. 7 shows thatgbe? is worse
than Design 1 for the first floor. Since the maximum acceleration measufiest #fioor of Design 2 is
approximately 20 dB, which is bigger than the second floor at both dedigssgn 1 is implemented in
practice to compared simulation and experimental results.

Figs. (9) and (10) show the FRF betwegranda, and betweery, anday, respectively for Design
1. Note that simulation and experimental results are practically the same, vatidate the models and
the experimental identifications of the building and TMDs.
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Figure 6: General control scheme.

6 CONCLUSIONS

Using simple TMD prototypes, in which the moving mass is guided by a flexibledstipg plate
(contact-free) and the damping is trusted to friction-free magnéect enables the possibility to make
accurate testing with TMDs and to validate theoretical models.

The results shown in this work validate the laboratory prototype of magnetaathped TMD built
in CARTIF (Spain) as a PVC system. In addition, the design methodology simsgfifietuning of the
parameters and allows to use it for more complex designs as the AVC implemeéfitddl a

Future works will be the application of these magnetically damped TMDs to manplea struc-
tures, where the control theory can be used to improve the performérceed of TMDs applied to
structures with natural frequencies spatially distributed and closely dpactaddition, the definition of
the functional (i.e., variables to be minimized) must be deeply studied in ordengider the maximum
vibration level on the overall structure.
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