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ABSTRACT 

Prognostics of large composite structures is a topic of increasing interest in the field of structural health 

monitoring for aerospace, civil, and mechanical systems. Along with recent advancements in real-time 

structural health data acquisition and processing for damage detection and characterization, model-

based stochastic methods for life prediction are showing promising results in the literature. Among 

various model-based approaches, particle-filtering algorithms are particularly capable in coping with 

uncertainties associated with the process. These include uncertainties about information on the damage 

extent and the inherent uncertainties of the damage propagation process. Some efforts have shown 

successful applications of particle filtering-based frameworks for predicting the matrix crack evolution 

and structural stiffness degradation caused by repetitive fatigue loads. Effects of other damage modes 

such as delamination, however, are not incorporated in these works. It is well established that 

delamination and matrix cracks not only co-exist in most laminate structures during the fatigue 

degradation process but also affect each other’s progression. Furthermore, delamination significantly 

alters the stress-state in the laminates and accelerates the material degradation leading to catastrophic 

failure. Therefore, the work presented herein proposes a particle filtering-based framework for 

predicting a structure’s remaining useful life with consideration of multiple co-existing damage-

mechanisms. The framework uses an energy-based model from the composite modeling literature. The 

multiple damage-mode model has been shown to suitably estimate the energy release rate of cross-ply 

laminates as affected by matrix cracks and delamination modes. The model is also able to estimate the 

reduction in stiffness of the damaged laminate. This information is then used in the algorithms for life 

prediction capabilities. First, a brief summary of the energy-based damage model is provided. Then, the 

paper describes how the model is embedded within the prognostic framework and how the prognostics 

performance is assessed using observations from run-to-failure experiments.  

 

Keywords: CFRP; matrix cracks; delamination; fatigue damage prognosis; particle filtering; sequential 

Monte Carlo 

1 INTRODUCTION 

Recent advancements in real-time structural health monitoring (SHM) methods enable an any-

time in-situ assessment of damaged and aging structures’ condition and allow collecting data on the 

progressive, inevitable damage growth due to operating and contingent loads. SHM technologies are 

increasingly used for fatigue-induced degradation monitoring of composite structures, where the 
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damage may be hidden in the internal layers and barely visible on the outer surfaces. The availability 

of information on damage type and damage extent would facilitate also the prediction of the 

remaining useful life (RUL) of the structure through the estimation of the fatigue damage progression. 

Addressing the RUL prediction by real-time methods can revolutionize the maintenance policies of 

aeronautical, mechanical, and civil industry, moving from the current damage tolerance approach to 

condition-based or predictive maintenance strategies. 

However, real-time prediction of RUL of composite materials is a challenging task that must 

factor in the coexistence of multiple damage mechanisms or multiple damage-modes (MDMs). These 

damage modes interact with one another and might also generate new damage modes. A typical 

example is the interaction caused by matrix cracks, delamination and buckling. Matrix cracks can 

induce local delamination, which can become global delamination, and the delaminated layers can 

fail because of buckling in case of negative load ratios (i.e., when the minimum load is compressive) 

[1]. In addition to the coexistence of MDMs, the RUL prediction is inherently affected by several 

sources of uncertainty. Fatigue of materials is uncertain in nature, since it is driven by inclusions and 

impurities caused by the manufacturing process and complex physical nano- and micro-scale 

phenomena not accounted for in common engineering models. Where damage is measured using 

automated SHM tools, there are additional uncertainties about current damage location and extent 

that further complicate the prediction of the damage growth. This makes stochastic approaches a 

logical choice for real-time RUL prediction.  

While highly desirable, real-time damage prognosis of composite laminates has so far been 

only sparsely explored. It requires a methodology to predict the damage evolution that merges 

stochastic approaches and real-time diagnostic information in the prognostic stage to update the RUL 

prediction. Recently, Bayesian filters have shown promising results in predicting the evolution of 

matrix cracks and consequent stiffness degradation of cross-ply laminates by including SHM data in 

the prognostic stage [2]. However, the effect of co-existing damage mechanisms was not incorporated 

in the damage progression model, and the resulting stiffness degradation was only linked to the 

presence of matrix cracks. 

The work reported herein follows the methodology proposed in [2] and extends the Bayesian 

framework by including an energy-based MDM model. This model was recently investigated in [3], 

where the authors showed successful predictions of the stiffness degradation caused by matrix cracks 

and delamination in cross-ply fiber-reinforced laminates. Here, the MDM model is embedded in a 

Bayesian filtering algorithm commonly referred to as particle filtering [4], which aims at 

simultaneously monitoring three degradation processes: matrix crack density, delamination and 

stiffness reduction. The energy-based MDM model enables the estimation of the interacting damage 

growth rates, and the embedding of the mechanical model into the Bayesian framework allows the 

probabilistic estimation of the RUL conditioned upon the available diagnostic data. The developed 

model-based prognostic framework is assessed against tension-tension fatigue damage progression 

data on a carbon fiber-reinforced polymer (CFRP) laminate. The growing damages were observed 

through X-ray images and quantified dimensions are provided to the algorithm sequentially, thus 

simulating a real-time condition where a SHM system provides regular information on the damage 

extent as time passes by. 

The rest of the paper organizes as follows: Section 2 introduces the MDM model and the 

equations to predict the damage progression, Section 3 shows the probabilistic framework based on 

particle filtering and the basic probability density functions (PDFs) to implement the algorithm and 

Section 4 shows the application on CFRP damage growth data. Section 5 draws some conclusions. 

2 MODELING OF CONCURRENT DAMAGE PROGRESSION 

Most of the models for damage growth prediction in composites resort on finite element 

methods because of the complexity of the damage mechanisms and their interactions. However, the 

computational costs of finite element methods prevent the applicability of resulting models in 

stochastic algorithms for real-time applications. Analytical damage progression models are, 
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therefore, preferred in real-time prognostic scenarios: where the model complexity can be scaled 

down to perform a fast estimation of the damage progression using simplified formulations of the 

stress state [3]. In addition, the tuning of analytical models is usually easier because of the limited 

number of model parameters. 

The approach proposed here, which follows [2], uses a strain energy release rate (SERR) 

model, since the stress intensity factor-based models, otherwise widely adopted in metal fatigue, lose 

their usefulness when several cracks and different damage mechanisms affect the material. The 

formulation of the SERR includes the effect of matrix cracks and delamination, 𝐺 = 𝐺(𝜌, 𝐷), which 

are the two most common damage mechanisms affecting fiber-reinforced laminates [5]. The model 

also provides an estimation of the Young’s modulus of the damaged laminate 𝐸𝑥, thereby enabling 

the monitoring of the stiffness degradation. 

The SERR range Δ𝐺, caused by fatigue loads, is used as an input to power law models for the 

estimation of the damage growth rates, expressed as damage growth per load cycle [6]. These power 

laws are commonly named modified Paris’ laws, given the similarity to Paris’ law used for metallic 

alloys. The growth rates of matrix crack density 𝜌 and delamination 𝐷 are, therefore, expressed using: 

d𝜌

d𝑁
= 𝐴(Δ𝐺(𝜌, 𝐷))

𝛼
, (1) 

d𝐷

d𝑁
= 𝐵(Δ𝐺(𝜌, 𝐷))

𝛽
. (2) 

The closed form solution of (1) and (2) rarely exists, since 𝐺 is understood to be a highly nonlinear 

function of the damage severity. So, the alternative is the estimation of the damage progression using 

a linear damage accumulation rule: 

𝜌𝑘 = 𝜌𝑘−1 +
d𝜌

d𝑁
|
𝜌𝑘−1,𝐷𝑘−1

Δ𝑁, (3) 

𝐷𝑘 = 𝐷𝑘−1 +
d𝐷

d𝑁
|
𝜌𝑘−1,𝐷𝑘−1

Δ𝑁, (4) 

where Δ𝑁 is the number of load cycles between two discrete time-steps, k-1 and k. Since 𝐺 for 

composite laminates is particularly high during the first stage of the fatigue life, large time steps (i.e., 

large Δ𝑁) can generate inaccurate solutions. Therefore, Δ𝑁 is usually kept equal to 1 to simulate the 

damage growth correctly. Once the amount of damage has been calculated, the ratio of the current 

elastic modulus 𝐸𝑥 (depending on 𝜌 and 𝐷) and the initial elastic modulus 𝐸𝑥,0 determines the 

normalized remaining stiffness of the laminate: 

𝑆 =
𝐸𝑥(𝜌,𝐷)

𝐸𝑥,0
. (5) 

The work in [3] investigated the capability of both matrix crack-induced delamination models 

and edge delamination models in describing the SERR as a function of matrix cracks and 

delamination and in estimating the laminate remaining stiffness as well. The study pointed out as the 

edge delamination model proposed by Zhang, Soutis and Fan [7] appeared as the best in describing 

the stiffness reduction of a notched cross-ply laminate already utilized in [2]. Zhang et al. analyzed 

the pioneering work of O’Brien [8], introducing the effective elastic modulus of a partially-

delaminated laminate, and they enhanced this model including the effect of matrix cracks in the 

laminated region.  

The model requires some simplifying assumptions on the type and shape of delamination, crack 

pattern and crack location. Specifically, this model was developed for symmetric balanced laminates 

under tensile loading and matrix cracks spanning full width of the 90° plies. Fig. 1 shows a graphical 

representation of the model, using a [0n/90m]s stacking sequence. Delamination 𝐷 is assumed to full 

length of the laminate (x-direction) and grows along the width, transverse to the applied load (y-

direction); it is expressed in meters, m. The matrix crack density 𝜌 is measured as number of cracks 

per unit length, #/m. 
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Figure 1. Zhang's model for a partially-delaminated cross-ply laminate [7]. 

 

In this case, the outer sub-laminates are aligned with the direction of the remote tensile stress 

𝜎0 indicated by the thick arrows (0° sub-laminates). The inner sub-laminate is perpendicular to the 

load direction (90° sub-laminate) and is affected by fatigue-induced matrix cracks. This configuration 

splits the laminate in three regions, two of which are symmetric. Therefore, only two distinct regions 

are created based on different features. Region I is the laminated region where delamination is absent 

and the matrix cracks in the 90° plies reduce the sub-laminate stiffness. Region II represents the fully-

delaminated region where the 0° sub-laminates are assumed to have disconnected from the 90° sub-

laminate. The two regions have different longitudinal elastic moduli named 𝐸𝑥,𝐼 and 𝐸𝑥,𝐼𝐼, 

respectively. The effective elastic modulus of the laminate is calculated as the weighted average of 

the two elastic moduli, 

𝐸𝑥(𝜌, 𝐷) = 𝐸𝑥,𝐼(𝜌) + [𝐸𝑥,𝐼𝐼 − 𝐸𝑥,𝐼(𝜌)]
𝐷

𝑊
, (6) 

where 𝐸𝑥,𝐼𝐼 depends on the number of delaminated interfaces. If both the interfaces between the 0° 

and 90° sub-laminates are delaminated (as shown in Fig. 1), 𝐸𝑥,𝐼𝐼 can be easily calculated using the 

laminate theory [1]. The matrix crack density 𝜌 influences 𝐸𝑥,𝐼, as modeled in [7] by means of in-situ 

damage effective functions (IDEFs), Λ = Λ(𝜌), which affects the stiffness matrix 𝑄 of the 90° plies: 

𝑄(𝜌) = [

𝑄11,0 𝑄12,0 0

𝑄21,0 𝑄22,0 0

0 0 𝑄66,0

] − [

𝑄12,0
2 𝑄22,0⁄ 𝑄12,0 0

𝑄21,0 𝑄22,0 0

0 0 𝑄66,0

] [

Λ22(𝜌)

Λ22(𝜌)

Λ66(𝜌)
]. (7) 

The IDEFs Λ22(𝜌) and Λ66(𝜌) were determined by Zhang and coauthors in previous works [9]. They 

are based on a modified two-dimensional shear lag analysis and they describe the in-situ constraint 

conditions of the 90° plies. The equations to derive the IDEFs are not reported here for the sake of 

brevity. Interested reader is referred to the original papers [7]-[9] for more details. Eventually, the 

SERR is calculated using: 

𝐺(𝜌, 𝐷) = 휀(𝜌, 𝐷)2 ℎ

𝑛𝑑
(𝐸𝑥,𝐼(𝜌) − 𝐸𝑥,𝐼𝐼), (8) 

where 휀(𝜌, 𝐷) = 𝜎0 𝐸𝑥⁄ (𝜌, 𝐷) and any thermal effect has been neglected. As explained above, the 

SERR 𝐺 is embedded into the damage growth rate and the longitudinal elastic modulus of the 

damaged laminate 𝐸𝑥(𝜌, 𝐷) is used to estimate the remaining stiffness. It is worth noting that the 

SERR range Δ𝐺 has been defined by: 

Δ𝐺 = (√𝐺𝑚𝑎𝑥 − √𝐺𝑚𝑖𝑛)
2
, (9) 
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𝐺𝑚𝑎𝑥 = 𝐺(𝜎0,𝑚𝑎𝑥)

𝐺𝑚𝑖𝑛 = 𝐺(𝜎0,𝑚𝑖𝑛)
. (10) 

In this way, the mean load effect, which can alter the similitude criterion, is neglected [10]. The SERR 

range in (9) is inserted in Eqq. (1) and (2) to calculate the damage growth rates, and the model used 

in particle filtering is then composed by Eqq. (3)-(5). 

3 PARTICLE FILTERING-BASED PROGNOSIS 

This section describes the prognostic framework that composes of the MDM model in Section 

2 and particle filtering. Specifically, a bootstrap sequential importance resampling algorithm with 

systematic resampling has been chosen to build the Bayesian framework [11]. Furthermore, a sub-

algorithm has been used to update the model parameter during run-time. The fundamental equations 

used in the algorithm are summarized and directly tailored for the fatigue damage prognosis problem 

below. 

Let us consider the system’s state 𝒙 governed by a dynamic state-space (DSS) model: 

𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝜽, 𝒖𝑘−1, 𝝎𝑘−1)

𝒛𝑘 = 𝑔(𝒙𝑘, 𝜼𝑘)
. (11) 

The system’s state vector contains the three damage modes 𝒙𝑘 = [𝜌𝑘, 𝐷𝑘 , 𝑆𝑘]
𝑇, while the 

measurement vector contains the observations of the true (unknown) system’s state 𝒛𝑘 =

[�̂�𝑘, �̂�𝑘 , �̂�𝑘]
𝑇
. The evolution equation 𝑓 describes the system’s state dynamics and is driven by Eqq. 

(3)-(5). Instead, the observation equation 𝑔 links the measures with the damage state. The 

uncertainties affecting the system’s state dynamics and the measurement system are embedded in the 

DSS model using random processes called process noise 𝝎𝑘, and measurement noise 𝜼𝑘, 

respectively. Since both the system’s state vector and the measurement vector are three-dimensional, 

the noise terms have been split in three independent expressions. Following the discussion in [12], 

the errors affecting the matrix crack density and delamination models are defined as log-Normal 

random processes 𝑒𝜔, while the error of the stiffness degradation model is an unbiased Gaussian 

random process: 

𝒙𝑘 = [

𝜌𝑘

𝐷𝑘

𝑆𝑘

] =

[
 
 
 
 
 𝜌𝑘−1 +

𝑑𝜌

𝑑𝑁
(𝜽, 𝒖𝑘−1)|

𝜌𝑘−1,𝐷𝑘−1

𝑒𝜔𝜌

𝐷𝑘−1 +
𝑑𝐷

𝑑𝑁
(𝜽, 𝒖𝑘−1)|

𝜌𝑘−1,𝐷𝑘−1

𝑒𝜔𝐷

𝐸𝑥(𝜌𝑘,𝐷𝑘)

𝐸𝑥,0
+ 𝜔𝑆 ]

 
 
 
 
 

. (12) 

The measurement noise terms are modeled as independent, unbiased Gaussian processes: 

𝒛𝑘 = [

�̂�𝑘

�̂�𝑘

�̂�𝑘

] = [

𝜌𝑘 + 𝜂𝜌

𝐷𝑘 + 𝜂𝐷

𝑆𝑘 + 𝜂𝑆

]. (13) 

Equation (12) shows the dependence of the damage growth rates on the model parameter vector 𝜽 

and the input vector 𝒖. The latter is the far-field stress range that drives Δ𝐺, so 𝒖 → 𝑢 = Δ𝜎0 =
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛. As already presented in [12], the use of a log-Normal random process with specific 

relation between mean and variance produces an unbiased evolution equation. The process noise 𝝎 

follows: 
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𝝎 = [𝜔𝜌, 𝜔𝐷 , 𝜔𝑆] ∼ 𝑀𝑉𝑁(𝜇𝜔, Σ𝜔)

𝜇𝜔 = [−
𝜎𝜔,𝜌

2

2
, −

𝜎𝜔,𝐷
2

2
, 0]

𝑇

Σ𝜔 = [

𝜎𝜔,𝜌
2 0 0

0 𝜎𝜔,𝐷
2 0

0 0 𝜎𝜔,𝑆
2

]

, (14) 

while the measurement noise is unbiased Gaussian 𝜼 ∼ 𝑀𝑉𝑁(0, Σ𝜂). The process and measurement 

noise terms have been modeled as stationary random processes; therefore, their dependence from the 

time step k has been neglected. The model parameter vector 𝜽 can be updated during run time to 

improve the prediction performance of the algorithm. Here, the artificial dynamics sub-algorithm has 

been used for its simplicity and effectiveness [13]. It introduces a perturbation of the model parameter 

values using a random disturbance 𝜸, usually defined as an unbiased Gaussian process: 

𝜽𝑘 = 𝜽𝑘−1 + 𝜸𝑘−1, (15) 

where 𝜸𝑘 ∼ 𝒩(0, Σ𝜸,𝑘). The covariance matrix Σ𝜸,𝑘 must decrease as time passes by to guarantee the 

convergence of the algorithm [13].  In this application, the covariance function has been chosen 

empirically according to the authors’ experience and follows 

Σ𝜸,𝑘 =
1

2𝑘
Σ𝜸,0, (16) 

where Σ𝜸,0 is the initial covariance matrix and k is the time step. The model parameter vector contains 

the empirical parameters of the modified Paris’ laws in Eqq. (1) and (2), 𝜽 = [log𝐴 , 𝛼, log 𝐵 , 𝛽]𝑇. 

The two parameters 𝐴 and 𝐵 have been embedded using their logarithmic form, since they are log-

Normally distributed [14]. 

The sequential importance resampling method allows the approximation of the conditional PDF 

of the system’s state and model parameter given the observations, 𝑝(𝒙𝑘, 𝜽𝑘|𝒛0:𝑘), using 𝑁𝑠 weighted 

samples: 

𝑝(𝒙𝑘, 𝜽𝑘|𝒛0:𝑘) ≈ ∑ 𝑤𝑘
(𝑖)𝛿(𝒙𝑘

(𝑖) − 𝒙𝑘)(𝜽𝑘
(𝑖) − 𝜽𝑘)

𝑁𝑠
𝑖=1 , (17) 

where the pairs {𝒙𝑘
(𝑖), 𝜽𝑘

(𝑖)}
𝑖=1

𝑁𝑠

 are Monte Carlo samples of the system’s state and model parameters, 

which are weighted by the weights 𝑤𝑘
(𝑖), 𝑖 = 1,… ,𝑁𝑠. Following the bootstrap particle filtering 

theory, the samples 𝒙𝑘
(𝑖)

 and 𝜽𝑘
(𝑖)

 are generated through the evolution equation and the artificial 

dynamics equation: 

𝒙𝑘
(𝑖) = 𝑓(𝒙𝑘−1

(𝑖) , 𝜽𝑘−1
(𝑖) , 𝒖𝑘−1, 𝝎

(𝑖))

𝜽𝑘
(𝑖) = 𝜽𝑘−1

(𝑖)
+ 𝜸𝑘−1

(𝑖)
, (18) 

where 𝜸𝑘−1
(𝑖)

is a sample from 𝒩(0, Σ𝜸,𝑘) and 𝝎(𝑖) is a sample from 𝑀𝑉𝑁(𝜇𝜔, Σ𝜔). It should be noted 

that the subscript k on the model parameter vector refers to the fact that the samples are from the k-

th posterior estimation, because the true 𝜽 is not time-varying. The weights 𝑤𝑘
(𝑖)

 depend on the 

likelihood of the observation given the sample 𝑝(𝒛𝑘|𝒙𝑘
(𝑖)), and are then normalized to sum up to 1, 

�̃�𝑘
(𝑖) = 𝑤𝑘−1

(𝑖) 𝑝(𝒛𝑘|𝒙𝑘
(𝑖))

𝑤𝑘
(𝑖) =

�̃�𝑘
(𝑖)

∑ �̃�𝑘
(𝑖)𝑁𝑠

𝑗=1

. (19) 
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The prediction step is carried out by propagating the samples of the system’s state in the future 

using the evolution equation 𝑓(⋅). At each time step, the system’s state sample 𝒙(𝑖) is altered by a 

sample of the model error 𝝎(𝑖), which simulates the unpredictable fluctuations of the damage growth 

rates caused by small-scale phenomena, otherwise, neglected in the model. The prognosis is 

analytically expressed through the p-step ahead prediction equation ([15]): 

�̂�(𝒙𝑘+𝑝|𝒛0:𝑘) = ∑ 𝑤𝑘
(𝑖)

∫ 𝑝(𝒙𝑘+1|𝒙𝑘
(𝑖)) ∏ 𝑝(𝒙𝑗|𝒙𝑗−1)𝑑𝒙𝑘+1:𝑘+𝑝−1

𝑘+𝑝
𝑗=𝑘+2𝒟

𝑁𝑠
𝑖=1 , (20) 

where 𝑝(𝒙𝑗|𝒙𝑗−1) is the transition density function, which comes from the probabilistic form of the 

evolution equation 𝑓(⋅). Once the posterior distribution of the system’s state has been computed, the 

samples 𝑥𝑘
(𝑖)

 are projected into the future using the transition density function (i.e., the evolution 

equation). The concept behind the prediction equation (Eq. (20)) can be further extended to calculate 

the number of fatigue load cycles to reach a pre-determined critical threshold, 𝒙𝐶𝑅. The samples of 

the system’s state are propagated until they reach the threshold, i.e., 𝒙𝑘+𝑙
(𝑖) = 𝒙𝐶𝑅. The number of 

fatigue load cycles corresponding to the time step 𝑘 + 𝑙 is defined as the end of life of the sample, 

𝑁𝑓
(𝑖)

. Thus, the RUL of the i-th sample is the difference between 𝑁𝑓
(𝑖)

 and the number of load cycles 

of the current time step, RUL𝑘
(𝑖) = 𝑁𝑓

(𝑖) − 𝑁𝑘. Once all the samples have crossed the critical threshold, 

the sample pairs {RUL𝑘
(𝑖), 𝑤𝑘

(𝑖)}
𝑖=1

𝑁𝑠

 are used to estimate the RUL distribution as follows: 

𝑝(RUL𝑘|𝒛0:𝑘) ≈ ∑ 𝑤𝑘
(𝑖)𝛿(RUL𝑘

(𝑖) − RUL𝑘)
𝑁𝑠
𝑖=1 . (21) 

Here, the critical threshold has been defined as a limit damage state 𝒙𝐶𝑅 = [𝜌𝐶𝑅 , 𝐷𝐶𝑅 , 𝑆𝐶𝑅]𝑇 that 

should not be crossed to guarantee the safety of the structure. Once the i-th sample 𝒙𝑘
(𝑖)

 reaches one 

of the limits (either 𝜌𝐶𝑅, 𝐷𝐶𝑅 or 𝑆𝐶𝑅), the sample’s propagation stops and the related RUL𝑘
(𝑖)

 is recorded 

to compute the RUL distribution. 

4 APPLICATION TO REAL FATIGUE-INDUCED DAMAGES IN CFRP LAMINATES 

The algorithm in Section 3 is applied to fatigue damage progression data publicly available 

from the NASA prognostics data repository [16]. These data refer to fatigue experiments on the 

notched cross-ply coupon L1S11 with dog-bone geometry and stacking sequence [02/904]s. Details 

on the tension-tension fatigue tests are available in [17]. The data acquisition stopped on a maximum 

of 𝑁𝑓 = 100 000 load cycles applied through a load frequency of 5 Hz, sinusoidal shape, maximum 

force 𝐹 = 31 kN and load ratio 𝑅 ≈ 0.14. The outer coupon dimensions are 152.4 mm × 254 mm 

[width × height], and the material properties of the Torayca T700G plies are expressed in Table 1. 

 

Table 1. Ply properties 

Young’s modulus  𝐸1 [GPa] 127.55 

Transverse elastic modulus  𝐸2 [GPa] 8.41 

In-plane Poisson’s ratio  𝜈12 [-] 0.309 

In-plane shear modulus 𝐺12 [GPa] 6.2 

Out-of-plane shear modulus 𝐺23 [GPa] 2.82 

Thickness 𝑡 [mm] 0.152 

 

A series of X-ray images frequently collected during the test allowed the quantification of the 

internal damage (matrix crack density and delamination), and a tri-axial strain gauge rosette on the 

outer surface was used to record the strains, Fig. 2. 
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Figure 2. Notched cross-ply coupon under test (a), and X-ray image (b). The light gray region close 

to the notch is the delaminated region, while the horizontal, light gray lines are the matrix cracks 

that span the width of the 90° sub-laminate. 

 

X-ray images were processed to quantify matrix crack density, delamination, and strain-gauge 

data were used to estimate the reduction in stiffness. The work in [3] summarizes the procedure to 

extract the amount of damage from the X-rays. Given the first damage assessment, the algorithm 

provides an estimation of the RUL, which is systematically updated whenever a new measurement 

becomes available. The number of samples used for running the algorithm is 𝑁𝑠 = 15000. The 

initialization values of the noise variances and the model parameter vector used are reported in Table 

2. The model parameters have been initialized using estimates based on other coupons. The critical 

threshold is set equal to the amount of damage observed at 𝑁𝑓 = 100 000 load cycles, which is 𝒙𝐶𝑅 =

[𝜌𝐶𝑅 , 𝐷𝐶𝑅 , 𝑆𝐶𝑅]𝑇 = [422, 0.0229, 0.88]𝑇. 

 

Table 2. Initialization of random noise and model parameter vector 

 

𝝎 𝜼 𝜽 

𝜔𝜌 𝜔𝐷 𝜔𝑆 𝜂𝜌 𝜂𝐷 𝜂𝑆 log𝐴 𝛼 log 𝐵 𝛽 

[-] [-] [-] [#/m] [m] [-] [
# 𝑚⁄

(𝐽 𝑚2⁄ )𝛽
] [-] [

𝑚

(𝐽 𝑚2⁄ )𝛽
] [-] 

𝜇 -5 -0.5·10-3 0 0 0 0 -11.5 3.3 -21.9 3.5 

𝜎2 10 1·10-3 5·10-6 80 1·10-6 7·10-5 0.85 0.01 0.85 0.01 

 

The filtered estimate of the damage progression is shown in Fig. 3. Every time a new 

observation becomes available, the updating of the weights 𝑤𝑘
(𝑖)

 consents to estimate the posterior 

distribution of the system’s state. The expected values and the confidence bands of the filtered 

estimates are representative of the goodness of the algorithm in monitoring the multiple, concurrent 

damage mechanisms. The matrix crack density estimation seems to be well captured by the algorithm; 

the expected value approaches the observed matrix crack density as time passes by. Delamination, 

however, is slightly underestimated by the algorithm for most of the fatigue life, while the estimated 

trend of the normalized stiffness has very narrow confidence bands, insomuch as most of the 

experimental observations fall outside the 99% of the 𝜎-band. Though, the observations of the 

stiffness degradation appear noisy, and the estimated trend seems to fall in between the observations. 

Then, the algorithm seems to be able to filter out disturbances and concentrates the samples in 

between the noisy observations correctly. 
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Figure 3. Posterior estimation of the damage growth against load cycles; matrix crack 

density (a), delamination (b) and normalized stiffness (c). 

After every posterior estimation of the damage state, the samples are further projected into the 

future using the prediction equation (Eq. (20)) to predict the RUL. The performance of sequential 

estimation of the RUL is reported in Fig. 4. The RUL prediction is already close to the true RUL 

since the very beginning of the fatigue life, after only a few load cycles. Though, the wide confidence 

band of the prediction suggests that the information is characterized by large uncertainty. Then, the 

confidence band shrinks over time, but the average RUL moves away from the true value (between 

10 000 and 40 000 load cycles). This implies that the values of the model parameters are changing 

during this stage to better fit the available data. After N = 50 000 load cycles, the expected RUL 

converges close to the correct value. The confidence band also keeps shrinking around the average 

RUL, thus indicating improvement in prediction performance with time. 

 

5 CONCLUSION 

This work proposes a model-based Bayesian framework for composite laminates exhibiting 

concurrent damage mechanisms. An energy-based model that is able to estimate the SERR and the 

longitudinal elastic modulus constitutes the core of the fatigue damage accumulation model, and the 

latter is embedded into a Bayesian framework of particle filtering. The approach has been already 

presented in the recent literature for monitoring the growth of matrix crack density, but the algorithm 

proposed here enables the real-time monitoring and prediction of coexisting damage modes, which 

interact with one another and their combined effect influences the remaining life of the structure. The 

methodology has been successfully applied to CFRP damage progression data obtained through 

tension-tension fatigue experiments. 

 

 

Figure 4. RUL prediction. The two additional lines indicating the band 𝑅𝑈𝐿 ± 10% of the 

end of life help in evaluating the goodness of the prediction. 
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The filtered estimation of the damage extent shows that the algorithm slightly underestimates 

the observed delamination growth. The posterior expectation of the matrix crack density is in line 

with the observed 𝜌, and the estimated stiffness degradation appears well-centered on the noisy 

observations made with the strain gauge. Large fluctuations in the RUL predictions characterize the 

early-mid stage of the fatigue life, but the expected value successfully converges to the true RUL 

after 50 000 load cycles and remains close to the target RUL until the end of the test.  

Future research should include the application of the prognostic method to other fatigue damage 

progression data. This is an important step to verify algorithm performance and generalize the validity 

of the approach. The number of samples 𝑁𝑠 has been chosen with a trial & error approach, and it is 

likely not the overall best choice to explore the state-space correctly. The use of refined methods to 

select 𝑁𝑠 can improve the algorithm performance and save computational time. In line with this idea, 

real-time, non-parametric methods to select (or update) the variance of the artificial dynamics 

perturbation can enhance the model parameter updating. Also, the use of refined sub-algorithms for 

the real-time parameter updating, like the kernel smoothing method may speed-up the convergence 

of the RUL prediction. Eventually, the definition of the end-of-life of CFRPs according to the 

asymptotic damage behavior should be further investigated. As a matter of fact, the horizontal 

asymptote representing the critical damage state can significantly change with the coupon because of 

the natural, inherent variability of the material. Therefore, a general and unified guideline to define 

the RUL of a composite laminate would be valuable. 

NOMENCLATURE 

𝐴 modified Paris’ law parameter 

𝐵 modified Paris’ law parameter 

𝐷 transverse delamination 

𝐸𝑥 longitudinal elastic modulus  

𝐺 strain energy release rate 

𝑁 load cycle 

𝑁𝑓 end-of-life (in cycles) 

𝑁𝑠 number of samples 

𝑄 stiffness matrix of the 90° plies 

𝑄𝑖𝑗,0 stiffness element of the undamaged ply in the i-j direction   

𝑆 normalized stiffness 

𝑊 laminate half-width 

𝑓 evolution equation 

𝑔 observation equation 

ℎ laminate half-thickness 

𝑘 time step 

𝑛𝑑 number of delaminated interfaces 

𝑢 input 

𝑤 sample weight 

𝑥 system state 

𝑧 observation 

 

Λ in-situ damage effective function 

𝛼 modified Paris’ law parameter 

𝛽 modified Paris’ law parameter 

𝛾 Gaussian random process 

𝛿 Kronecker delta 

휀 far-filed strain 

𝜂 measurement noise 
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𝜃 model parameter  

𝜌 matrix crack density 

𝜎0 far-field stress 

𝜔 process noise 
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