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ABSTRACT. Growing interest for improving the reliability of safety-critical structures, such as wind
turbines, has led to the advancement of structural health monitoring (SHM). Existing techniques for
fault detection can be broadly classified into two major categories: model-based methods and signal
processing-based methods. This work focuses in the signal-processing-based fault detection by using
principal component analysis (PCA) as a way to condense and extract information from the collected
signals. In particular, the goal of this work is to select a reduced number of sensors to be used. From a
practical point of view, a reduced number of sensors installed in the structure leads to a reduced cost of
installation and maintenance. Besides, from a computational point of view, less sensors implies lower
computing time, thus the detection time is shortened.
The overall strategy is to firstly create a PCA model measuring a healthy wind turbine. Secondly, with
the model, and for each fault scenario and each possible subset of sensors, it measures the Euclidean
distance between the arithmetic mean of the projections into the PCA model that come from the healthy
wind turbine and the mean of the projections that come from the faulty one. Finally, it finds the subset of
sensors that separate the most the data coming from the healthy wind turbine and the data coming from
the faulty one.
Numerical simulations using a sophisticated wind turbine model (a modern 5MW turbine implemented in
the FAST software) show the performance of the proposed method under actuators (pitch and torque) and
sensors (pitch angle measurement) faults of different type: fixed value, gain factor, offset and changed
dynamics.
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1 INTRODUCTION

The past few years have seen a rapid growth in interest in wind turbine fault detection [1] through
the use of condition monitoring and structural health monitoring (SHM) [2, 3]. The SHM techniques are
based on the idea that the change in mechanical properties of the structure will be captured by a change in
its dynamic characteristics [4]. Existing techniques for fault detection can be broadly classified into two
major categories: model-based methods and signal processing-based methods. For model-based fault
detection, the system model could be mathematical—or knowledge-based [5]. Faults are detected based
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on the residual generated by state variable or model parameter estimation [6, 7, 8]. For signal processing-
based fault detection, mathematical or statistical operations are performed on the measurements (see, for
example, [9, 10]), or artificial intelligence techniques are applied to the measurements to extract the
information about the faults (see [11, 12]).

With respect to signal-processing-based fault detection, principal component analysis (PCA) is used
in this framework as a way to condense and extract information from the collected signals. Following
this structure, the goal of this work is to enhance the method proposed by the authors in [13] –which
is focused on the development of a wind turbine fault detection strategy that combines a data driven
baseline model based on PCA and hypothesis testing– by selecting a reduced number of sensors to be
used. A different approach in the frequency domain can be found in [14], where a Karhunen-Loeve basis
is used.

Most industrial wind turbines are manufactured with an integrated system that can monitor various
turbine parameters. These monitored data are collated and stored via a supervisory control and data
acquisition (SCADA) system that archives the information in a convenient manner. These data quickly
accumulates to create large and unmanageable volumes that can hinder attempts to deduce the health of
a turbine’s components. It would prove beneficial if the data could be analyzed and interpreted automat-
ically (online) to support the operators in planning cost-effective maintenance activities [15, 16]. This
work describes a strategy to reduce and select the number of sensors to be used when the fault detec-
tion strategy introduced in [13] is used to identify incipient faults in the main components of a turbine.
The SCADA data sets are already generated by the integrated monitoring system, and therefore, no new
installation of specific sensors or diagnostic equipment is required. The strategy presented in [13] is
based on principal component analysis and statistical hypothesis testing. The final section of the work
shows the performance of the selected and reduced number of sensors when the fault detection strategy
is applied to an enhanced benchmark challenge for wind turbine fault detection, see [1]. This benchmark
proposes a set of realistic fault scenarios considered in an aeroelastic computer-aided engineering tool
for horizontal axes wind turbines called FAST, see [17].

2 WIND TURBINE BENCHMARK MODEL

A complete description of the wind turbine benchmark model, as well as the used baseline torque and
pitch controllers, can be found in [1]. In this benchmark challenge, a more sophisticated wind turbine
model—a modern 5 MW turbine implemented in the FAST software—and updated fault scenarios are
presented. These updates enhance the realism of the challenge and will therefore lead to solutions that
are significantly more useful to the wind industry. Hereafter, a brief review of the reference wind turbine
is given and the generator-converter actuator model and the pitch actuator model are recalled, as the
studied faults affect those subsystems. A complete description of the tested fault scenarios is given.

2.1 Reference Wind Turbine

The numerical simulations use the onshore version of a large wind turbine that is representative of
typical utility-scale land- and sea-based multimegawatt turbines described by [18]. This wind turbine is
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a conventional three-bladed upwind variable-speed variable blade-pitch-to-feather-controlled turbine of
5 MW. In this work we deal with the full load region of operation (also called region 3). That is, the
proposed controllers main objective is that the electric power follows the rated power. In the simulations,
new wind data sets with turbulence intensity set to 10% are generated with TurbSim [19]. The wind
speed covers the full load region, as its values range from 12.91 m/s up to 22.57 m/s.

2.2 Generator-Converter Model and Pitch Actuator Model

On one hand, the generator-converter system can be approximated by a first-order ordinary differen-
tial equation, see [1], which is given by:

τ̇r(t) + αgcτr(t) = αgcτc(t) (1)

where τr and τc are the real generator torque and its reference (given by the controller), respectively. In
the numerical simulations, αgc = 50, see [18]. Moreover, the power produced by the generator, Pe(t), is
given by (see [1]):

Pe(t) = ηgωg(t)τr(t) (2)

where ηg is the efficiency of the generator and ωg is the generator speed. In the numerical experiments,
ηg = 0.98 is used, see [1].

On the other hand, the hydraulic pitch system consists of three identical pitch actuators, which are
modeled as a linear differential equation with time-dependent variables, pitch angle β(t) and its refer-
ence βr(t). In principle, it is a piston servo-system, which can be expressed as a second-order ordinary
differential equation [1]:

β̈(t) + 2ξωnβ̇(t) + ω2
nβ(t) = ω2

nβr(t) (3)

where ωn and ξ are the natural frequency and the damping ratio, respectively. For the fault-free case, the
parameters ξ = 0.6 and ωn = 11.11 rad/s are used, see [1].

2.3 Fault Scenarios

Both actuator and sensor faults are considered. All the described faults originate from actual faults
in wind turbines [1]. Table 1 summarizes all the considered fault scenarios.

2.3.1 Actuator Faults

Pitch actuator faults are studied as they are the actuators with highest failure rate in wind turbines.
A fault may change the dynamics of the pitch system by varying the damping ratio (ζ) and natural
frequencies (ωn) from their nominal values to their faulty values. The parameters for the pitch system
under different conditions are given in Table 1. The normal air content in the hydraulic oil is 7%, whereas
the high air content in oil fault (F1) corresponds to 15%. Pump wear (F2) represents the situation of 75%
pressure in the pitch system while the parameters stated for hydraulic leakage (F3) correspond to a
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Table 1: Fault scenarios.
Fault Type Description

1 Pitch actuator Change in dynamics: high air content in oil (ωn = 5.73rad/s, ξ = 0.45)
2 Pitch actuator Change in dynamics: pump wear (ωn = 7.27rad/s, ξ = 0.75)
3 Pitch actuator Change in dynamics: hydraulic leakage (ωn = 3.42rad/s, ξ = 0.9)
4 Generator speed sensor Scaling (gain factor equal to 1.2)
5 Pitch angle sensor Stuck (fixed value equal to 5deg)
6 Pitch angle sensor Stuck (fixed value equal to 10deg)
7 Pitch angle sensor Scaling (gain factor equal to 1.2)
8 Torque actuator Offset (offset value equal to 2000Nm)

pressure of only 50%. The three faults are modeled by changing the parameters ωn and ζ in the relevant
pitch actuator model.

For the test, the change in dynamics faults given in Table 1 are introduced only in the third pitch
actuator (thus β1 and β2 are always fault-free).

A torque actuator fault (F8) is also studied. This fault is an offset on the generated torque, which can
be due to an error in the initialization of the converter controller. This fault can occur since the converter
torque is estimated based on the currents in the converter. If this estimate is initialized incorrectly it will
result in an offset on the estimated converter torque, which leads to the offset on the generator torque.
The offset value is 2000 Nm.

2.3.2 Sensor Faults

The generator speed measurement uses encoders and its elements are subject to electrical and me-
chanical failures, which can result in a changed gain factor on the measurement. The simulated fault, F4,
is a gain factor on ωg equal to 1.2.

Faults 5 and 6 result in blade 3 having a stuck pitch angle sensor, which holds a constant value of 5◦

(F5) and 10◦ (F6), respectively.
Finally, the fault of a gain factor on the measurement of the third pitch angle sensor is studied (F7).

The measurement is scaled by a factor of 1.2.

3 SENSOR SELECTION

The goal of this section is to present a method to select a reduced number of sensors to be used in
the fault detection method. From a practical point of view, a reduced number of sensors installed in the
structure leads to a reduced cost of installation and maintenance. Besides, from a computational point of
view, less sensors implies less computing time so the detection time is also reduced.

Classical approaches to sensor or variable selection may be summarized in the following example.
Let us assume we have N sensors or variables that are measuring during (n−1)∆ seconds, where ∆ is the
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Table 2: Assumed available measurements. These sensors are representative of the types of sensors that
are available on a MW-scale commercial wind turbine.

Number Sensor Type Symbol Units

1 Generated electrical power Pe,m kW

2 Rotor speed ωr,m rad/s

3 Generator speed ωg,m rad/s

4 Generator torque τc,m Nm

5 first pitch angle β1,m deg

6 second pitch angle β2,m deg

7 third pitch angle β3,m deg

8 fore-aft acceleration at tower bottom ab
f a,m m/s2

9 side-to-side acceleration at tower bottom ab
ss,m m/s2

10 fore-aft acceleration at mid-tower am
f a,m m/s2

11 side-to-side acceleration at mid-tower am
ss,m m/s2

12 fore-aft acceleration at tower top at
f a,m m/s2

13 side-to-side acceleration at tower top at
ss,m m/s2

sampling time and n ∈ N. The discretized measures of each sensor can be arranged as a column vector
xi = (xi

1, x
i
2, . . . , x

i
n)T , i = 1, . . . ,N so we can build up a n × N matrix as follows:

X =
(

x1 x2 · · · xN
)

=



x1
1 x2

1 · · · xN
1

x1
2 x2

2 · · · xN
2

...
...

. . .
...

x1
i x2

i · · · xN
i

...
...

. . .
...

x1
n x2

n · · · xN
n


∈ Mn×N(R) (4)

It is worth noting that each column in matrix X in equation (4) represents the measures of a single
sensor or variable. In general, when a large number of variables or sensors is available the results are
usually slightly changed if just a subset of the sensors is used. Consequently, a simple approach is to
calculate the subset ofσ sensors that maximizes the multiple correlation of the N−σ non-selected sensors
with respect to theσ selected sensors. A similar approach, based on principal component analysis (PCA),
that is also used in the field of feature extraction is to compute the first principal components and observe
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the coefficients of the corresponding eigenvectors. More precisely, if the unit eigenvector related to the
largest eigenvalue is

u1 = α1s1 + α2s2 + · · · + αN sN ,

N∑
i=1

α2
i = 1,

the sensor associated with the smallest coefficient α = min
i=1,...,N

αi can be neglected. A comprehensive

list of methods for deciding which variables or sensors to reject can be found in [20]. However, when
multiway principal component analysis is applied to data coming from N sensors at L discretization
instants and n experimental trials, the information can be stored in an unfolded n × (N · L) matrix as
follows:

X =



x1
11 x1

12 · · · x1
1L x2

11 · · · x2
1L · · · xN

11 · · · xN
1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1
i1 x1

i2 · · · x1
iL x2

i1 · · · x2
iL · · · xN

i1 · · · xN
iL

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1
n1 x1

n2 · · · x1
nL x2

n1 · · · x2
nL · · · xN

n1 · · · xN
nL


(5)

(6)

In this case, a column in matrix X in equation (7) no longer represents the values of a variable at different
time instants but the measurements of a variable at one particular time instant in the whole set of experi-
mental trials. Consequently, even though PCA can be applied to this kind of matrices as a way to reduce
the dimensionality of the data and to create a new coordinates space where the data is best represented,
the eigenvalues and eigenvectors of the covariance matrix CX = 1

N·L−1 XT X cannot be directly used to
infer what variables or sensors could be neglected. Besides, we are not only interested in the sensors that
best model the healthy structure but the sensors that best discriminate the faulty structure.

The overall strategy to select the best subset of sensors that discriminate the healthy and the faulty
wind turbine is to create a multiway PCA model measuring a healthy wind turbine. With the model, and
for each fault scenario, me measure the euclidean distance between the arithmetic mean of the projections
into the PCA model that come from the healthy structure and the mean of the projections that come from
the faulty one. The subset of sensors related to the maximum distance between the means of each pair
of projections will be the selected sensors. The detailed algorithmic procedure is described in the next
section.

3.1 Sensor selection algorithm

Sensor selection can be essentially viewed as a combinatorial problem involving some kind of per-
formance criterion over all possible options. In the subsequent algorithm, some parameters must be
selected, such as the cardinal of the initial set of variables or sensors N, the number of sensors σ to be
combined or the number ` of principal components.
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1. Consider a set S = {s1, s2, . . . , s13} of N = 13 sensors as in Table 2.

2. Consider a number of sensors σ to be combined, σ = 2, . . . ,N.

3. Consider the set Ωσ =

{
Sσ1 ,S

σ
2 , . . . ,S

σ

(N
σ)

}
formed by the

(
N
σ

)
σ−subsets of σ elements out of the

set S. For instance, S2
1 = {s1, s2}. In a general case, we will write Sσk = {s(1), s(2), . . . , s(σ)}, k =

1, . . . ,
(

N
σ

)
, where s(1) refers to the first sensor in Sσk , s(2) to the second sensor in the set and so on.

4. For each σ−subset Sσk ∈ Ωσ, k = 1, . . . ,
(

N
σ

)
, measure, from a healthy wind turbine, sensors

s(1), s(2), . . . , s(σ) during (nL − 1)∆ seconds.

5. Arrange the collected data coming from the σ sensors in a matrix X ∈ Mn×(σ·L)(R) as follows:

X =


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n2 · · · x(1)
nL x(2)
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nL · · · x(σ)

n1 · · · x(σ)
nL


(7)

6. Choose a number ` of principal components, ` = 1, . . . , σ · L.

7. Perform a sensor-based group scaling and find the PCA model P ∈ M(σ·L)×(σ·L)(R) (also called
loading matrix) as detailed in [13, Section 3.1]. Consider the reduced matrix P̂ := P(:, 1 : `) ∈
M(σ·L)×`(R) related to the ` highest eigenvalues, formed by the first ` columns of matrix P.

8. Measure, from a healthy wind turbine, sensors s(1), s(2), . . . , s(σ) during (nhL − 1)∆ seconds. Ar-
range the collected data coming from the σ sensors in a matrix Yh ∈ Mnh×(σ·L)(R) as follows:

Yh =



y(1)
11 y(1)

12 · · · y(1)
1L y(2)
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1L · · · y(σ)

11 · · · y(σ)
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...

y(1)
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iL y(2)

i1 · · · y(2)
iL · · · y(σ)

i1 · · · y(σ)
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...
...

. . .
...
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. . .

...
. . .
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. . .
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y(1)
nh1 y(1)

nh2 · · · y(1)
nhL y(2)

nh1 · · · y(2)
nhL · · · y(σ)

nh1 · · · y(σ)
nhL


(8)

Perform a sensor-based group scaling and project the data to the principal component space using
the matrix product T̂h = YhP̂ ∈ Mnh×`(R). Define ti

h ∈ R
`, i = 1, . . . , nh each row vector of matrix

T̂h. Note that nh is a natural number not necessarily equal to n in Step 4.
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9. Measure, from a faulty wind turbine, sensors s(1), s(2), . . . , s(σ) during (nfL−1)∆ seconds. Arrange
the collected data coming from the σ sensors in a matrix Yf ∈ Mnf×(σ·L)(R) as follows:

Yf =



z(1)
11 z(1)

12 · · · z(1)
1L z(2)

11 · · · z(2)
1L · · · z(σ)

11 · · · z(σ)
1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

z(1)
i1 z(1)

i2 · · · z(1)
iL z(2)

i1 · · · z(2)
iL · · · z(σ)

i1 · · · z(σ)
iL

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

z(1)
nf1

z(1)
nf2
· · · z(1)

nfL
z(2)

nf1
· · · z(2)

nfL
· · · z(σ)

nf1
· · · z(σ)

nfL


(9)

Perform a sensor-based group scaling and project the data to the principal component space using
the matrix product T̂f = YfP̂ ∈ Mnf×`(R). Define ti

f ∈ R
`, i = 1, . . . , nf each row vector of matrix

T̂f. Note again that nf is a natural number not necessarily equal to n in Step 4 neither nh in Step 8.

10. Define µh as the mean vector value of ti
h ∈ R

`, i = 1, . . . , nh, that is, µh = 1
nh

∑nh
i=1 ti

h ∈ R
`.

11. Define µf as the mean vector value of ti
f ∈ R

`, i = 1, . . . , nf, that is, µf = 1
nf

∑nf
i=1 ti

f ∈ R
`.

12. Compute the euclidean norm ‖µh − µf‖2 =: Nσ
k associated to the σ−subset Sσk ∈ Ωσ, k =

1, . . . ,
(

N
σ

)
.

13. Find κσ ∈
{
1, . . . ,

(
N
σ

)}
where Nσ

κσ = maxk=1,...,(N
σ)N

σ
k .

Therefore, given a particular fault scenario, theσ sensors in the setSσκσ are the sensors that separate
the most the data coming from the healthy wind turbine and the data coming from the faulty one.

3.2 Results of the sensor selection

The results of the sensor selection are summarized in Tables 3 and 4 when the number of sensors to
be combined is σ = 3 and σ = 6, respectively. With respect to Table 3 it is worth noting that sensors 5
and 6 –corresponding to the first and second pitch angles– appear as selected in all the 8 fault scenarios.
The triad of sensors is completed in some cases with the third pitch angle (fault scenario number 1, 2,
3, 4 and 6), the generated electrical power (fault scenario number 1) and the side-to-side acceleration at
tower top (fault scenario number 5 and 7). Similarly, with respect to Table 4 it is also worth remarking
that sensors 5, 6 and 7 –corresponding to the first, second and third pitch angles– appear as selected in all
the 8 fault scenarios. In this case, the sextuple of sensors is completed in fault scenarios 1, 2, 3 and 7 with
sensors 9, 11 and 13 (side-to-side accelerations at tower bottom, mid-tower and tower top, respectively);
in fault scenario 4 with sensors 1, 2 and 3 (generated electrical power, rotor speed and generator speed,
respectively); in fault scenario 5 with sensors 1, 2 and 13 (generated electrical power, rotor speed and
side-to-side acceleration at tower top, respectively); in fault scenario 6 with sensors 1, 3 and 13 (generated
electrical power, generator speed and side-to-side acceleration at tower top, respectively); finally, in fault
scenario 8 with sensors 1, 11 and 13 (generated electrical power, side-to-side acceleration at mid-tower
and tower top, respectively).
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Table 3: Sensor selection when the number of sensors to be combined is σ = 3 for each of the 8 fault
scenarios described in Table 1.

sensors
Fault no. 1 2 3 4 5 6 7 8 9 10 11 12 13

1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X

4 FAULT DETECTION WITH A REDUCED NUMBER OF SENSORS

To analyze the effect on the overall performance of the fault detection strategy with a reduced number
of sensors, we will study a total of 24 samples of ν = 50 elements each, corresponding to the following
distribution: 16 samples of a healthy wind turbine; and 8 samples of a faulty wind turbine with respect to
each of the 8 particular fault scenarios defined in Table 1. In this section, we will consider the following
particular combination ofσ = 6 sensors: sensors 1, 2, 3, 4, 5 and 6, that is, we will measure and collect the
information provided by the generated electrical power, rotor speed, generator speed, generator torque
and the first and second pitch angles.

For this combination, each sample of ν = 50 elements is formed by the measures gathered from
the sensors during (ν · L − 1)∆ = 312.4875 seconds, where L = 500 and the sampling rate 1/∆ = 80
Hz. The fault detection strategy is based on the work by Pozo and Vidal [13], where multiway principal
component analysis (MPCA) is first applied and then the so-called Welch-Satterthwaite method [21] to
test for the equality of means.

As stated before, one configuration of σ = 6 sensors has been considered. Table 5 summarizes
how the results in Table 6 are organized. More precisely, Table 6 includes –using the measures of
sensors 1, 2, 3, 4, 5 and 6– the number of samples of the healthy structure correctly classified by the test
as healthy (correct decision); the number of samples of the faulty structure correctly classified as faulty
(correct decision); the number of samples of the faulty structure wrongly classified as healthy (type II
error or missing fault); and the number of samples of the healthy structure wrongly classified as faulty
(type I error or false alarm). It is worth noting that type I errors (false alarms) and type II errors (missing
faults) occur when we consider scores 2, 3 or 4, i.e., when the test is based purely on the first score all
the classifications are accurate.
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Table 4: Sensor selection when the number of sensors to be combined is σ = 6 for each of the 8 fault
scenarios described in Table 1.

sensors
Fault no. 1 2 3 4 5 6 7 8 9 10 11 12 13

1 X X X X X X
2 X X X X X X
3 X X X X X X
4 X X X X X X
5 X X X X X X
6 X X X X X X
7 X X X X X X
8 X X X X X X

Table 5: Scheme for the presentation of the results in Table 6.

Undamaged Sample (H0) Damaged Sample (H1)

Fail to reject H0 Correct decision Type II error (missing fault)
Reject H0 Type I error (false alarm) Correct decision

5 CONCLUDING REMARKS

The silver bullet for offshore operators is to eliminate unscheduled maintenance. Therefore, the im-
plementation of a fault detection system is crucial. The main challenges of the wind turbine fault detec-
tion lie in its nonlinearity, unknown disturbances as well as significant measurement noise. In this work,
numerical simulations (with a well-known benchmark wind turbine) show that the proposed PCA plus
statistical hypothesis testing is a valuable tool in fault detection for wind turbines, even when the number
of sensors that are measured are significantly reduced. It is noteworthy that, in the simulations, when
the first score is used all the decisions are correct (there are no false alarms and no missing faults). We
believe that PCA plus statistical hypothesis testing has tremendous potential in decreasing maintenance
costs.
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Table 6: Categorization of the samples with respect to the presence or absence of damage and the result
of the test for each of the four scores when the size of the samples to diagnose is ν = 50 and the sensors
used are numbers 1, 2, 3, 4, 5 and 6.

score 1 score 2 score 3 score 4
H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 16 0 9 0 8 1 13 0
Reject H0 0 8 7 8 8 7 3 8
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