
CCWI 2017 – Computing and Control for the Water Industry Sheffield 5th - 7th September 2017 

Clustering-based Burst Detection Using Multiple Pressure Sensors in 

District Metering Areas 
 

Yipeng Wu1, Shuming Liu2 
1,2 School of Environment, Tsinghua University, 100084, Beijing, China 

2shumingliu@tsinghua.edu.cn 

 

ABSTRACT  

Bursts in water distribution systems (WDS) can cause water loss, service interruptions and other 

negative effects. However, it is challengeable for worldwide water utilities to timely be aware of 

bursts. This paper presents a novel burst detection approach using data from multiple pressure 

sensors in district metering areas (DMA). Differing from most data-driven methods that employ 

prediction models, this method utilizes a clustering algorithm to detect burst-induced data. Owing 

to the use of cosine distance in clustering analysis, temporal varying correlation between data from 

diffierent sensors is exploited, making the method only requires one day’s worth of data to 

implement. When applied to a DMA with three pressure sensors, the method successfully detected 

some real and simulated bursts over a period of two months.  
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1 INTRODUCTION 

Worldwide water utilities have been troubled by leakage in water distribution systems (WDSs) for 

decades. Significant loss of treated water and huge cost of repairs caused by leakage have exerted 

tremendous financial pressure on utilities. Pipe bursts are a form of leakage characterized by short 

duration but typically high flow. Other than the waste of water, the negative effects of bursts, such 

as customer service interruptions and the intrusion of contaminants through broken pipes, are non-

negligible [1, 2]. In order to facilitate water utilities’ quick reaction to pipe bursts, effective and 

efficient methods are required to be aware of bursts in a timely manner.  

Owing to use of the supervisory control and data acquisition (SCADA) system, near real-time 

hydraulic data are collected so that network behaviours including bursts can be identified with data-

driven detection approaches [3]. Some of these methods have been applied in real-life district 

metering areas (DMA) and showed respectable detection performance [4]. However, most of 

existing data driven approaches are based on a prediction-classification two-stage framework [1]. 

The prediction stage estimates ideal data under normal network conditions using prediction models, 

such as artificial neural networks (ANN), Kalman filter and polynomial models [4-6]. When it 

comes to the classification stage, difference between predicted and observed hydraulic values is 

evaluated. If the difference is large enough, an alarm will be triggered to indicate a burst or an event. 

Consequently, the accuracy of classification is determined by the prediction stage. In order to fit 

variations of hydraulic data (e.g., diurnal pattern of flow readings), vast historical data (extending 

many weeks and sometimes years) are needed to train above-mentioned models. Noticeably, 

because of the existence of unusable historical data (e.g., event-induced data, missing data and 

replicated data), data pre-processing is indispensable before the training of prediction models. The 

accuracy of prediction is prone to being affected by the quality of this process. Furthermore, 

prediction-classification methods cannot immediately be applied to newly built or reformed 
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networks due to the shortage of historical data. To overcome the limitations, it is necessary to 

develop new methods that require much less historical data (e.g., a day’s worth of data). 

This paper presents a burst detection method based on a clustering algorithm. The approach uses 

data from multiple pressure sensors to identify whether a burst occurs in a DMA near real time. 

Compared with most current data-driven approaches, it clusters actual measurements using the 

dissimilarity between pressure measurements rather than analysing discrepancies between 

monitored and predicted values. Most importantly, this method only requires a day of time series 

data to implement because it fully utilizes temporal varying correlation between pressure data from 

different sensors. The methodology is discribed in section 2. In section 3, some real events and 

simulated bursts in a DMA located in southern China are used to evaluate the performance of this 

method.   

2 METHODOLOGY 

2.1 Data Transformation 

Figure 1 shows the typical diurnal patterns of three pressure sensors in a DMA. A burst occurs 

between 8:40 and 9:00. It is clear that the data from different sensors fluctuate greatly, though, they 

always vary at the same time with similar changes in amplitude. This feature between data from 

multiple sensors is defined as temporal varying correlation. 

 

Figure 1. One day’s worth of pressure data from three sensors in a DMA. The data within the grey 

area represent a burst event. 

 

Pressure data drop significantly for two of the sensors, whereas the other sensor’s data only change 

slightly during the burst event. In other words, the temporal varying correlation disappears due to 

the burst. In a DMA, the value ranges of pressure sensors may differ from each other. To reinforce 

the temporal varying correlation and make the burst-induced data more distinguishable, the time 

series from each pressure sensor is divided by its median value for normalization (shown in Figure 

2). Then the normalized data are transformed into a matrix. Each row in the matrix is a vector that 

includes 3 normalized measurements from different sensors at the same time step. 
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Figure 2. Normalized pressure data and pressure matrix. 

 

 

2.2 Cosine Distance and Clustering Algorithm 

To autumatically identify burst-induced vectors (or some abnormal vectors caused by other events), 

this paper employs a clustering algorithm developed by Rodriguez and Laio [7]. A proper 

dissimilarity measure is an important issue in clustering analysis and the selection of it should 

consider features of the data to be analysed. As shown in Figure 3A, most of 288 vectors from the 

pressure matrix are approximately along the same direction in 3-dimensional space. This is 

essentially the concrete embodiment of temporal varying correlation between data from multiple 

sensors in space. The vectors representing a burst (red points) distinguish themselves because they 

deviate from this direction. Considering that, cosine distance, based on the cosine of the angle 

between any two vectors, is used to measure the dissimilarity between each set of two vectors. 

When the angle between two vectors is small (i.e., the vectors have approximately the same 

direction), they are similar to each other even when all elements in the vectors have different 

magnitudes (e.g., x and 2x). By contrast, the two vectors are dissimilar if the angle between them is 

large. Consequently, normal vectors are similar to each other and are dissimilar to burst-induced 

vectors. At this point, the clustering algorithm can be used to differentiate vectors with high 

dissimilarity. 

 

Figure 3. Location distribution of pressure vectors in 3-dimensional space. All vectors are from the 

matrix in Figure 2 and the red ones are burst-induced vectors.  
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In clustering analysis, two quantities need to be computed for each vector: the vector’s local density 

  and its distance   from vectors of higher density. The vectors that may represent bursts, with 

high dissimilarity to others, are deemed as outliers. Because the purpose is outlier detection, this 

method is not concerned with the number of clusters. Wu et al. [8] have described the calculation 

procedure of the two quantities in detail and defined outliers as the vectors with lowest   and 

significantly large  . To quantify how large   should be, a significance factor   is introduced. 

The vectors with the lowest local density are ranked in descending order according to the   of 

each vector. If the value of   is 0.1, the top 10% of those ordered vectors are regarded as outliers. 

It should be noted that both   and   are computed based on cosine distance between vectors in 

this paper. Assuming that a matrix only contains normal vectors (defined as reference matrix in the 

paper), the clustering algorithm can identify a newly collected burst-induced vector by evaluating 

the dissimilarity between it and other normal vectors. 

3 CASE STUDY 

The case study is located in a DMA in southern China, with an average water demand of 4500 m3. 

The number of consumers is 6950 and most of them are urban residents. The DMA, supplied via a 

single main, is monitored by a flow sensor at the inlet. The layout of three pressure sensors used in 

this study is shown in Figure 4. The sampling interval of these sensors is 5 minutes. To evaluate the 

detection performance of the clustering-based method, data from 1 June to 31 July 2016 were 

collected. Missing values were replaced with zeros to ensure data continuity. 

 

Figure 4. Pipe network of the case study. 

Data for 1 June, a day on which no event occurred, are used to form a reference matrix. Pressure 

data from 2 June to 31 July form 17,280 3-dimensional vectors (there are 60 days and each day has 

288 points in time). Every vector is to be detected in sequence by evaluating its disimilarity to the 

reference matrix. That is to say, every detection carries out the clustering analysis for the reference 

matrix and a new vector (289 vectors in total) to identify whether the new vector is an outlier. As 

discussed in section 2.1, all data are normalized before clustering. There are 2 incidences of hydrant 

damage, 2 incidences of pipe flushing and 3 burst simulations over this period and all of them can 

be regarded as bursts. Table 1 presents the detailed description of these events. According to the 

duration of the events (confirmed by the records from the water utility and flow monitoring data), 
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50 vectors should be detected as outliers. This is the basis to calculate true positive rate (TPR) and 

false positive rate (FPR). 

Table 1. Detailed description of some events and corresponding detection result ( =0.5). 

 

Type Location Duration 
% of average 

daily flow 

Detected outliers and 

corresponding time 

Hydrant 

damage 

H4 14/7/2016 11:40-12:05 70% 3(11:40-11:50) 

H2 24/7/2016 8:40-9:00 40% 5(8:40-9:00) 

Simulated 

burst 

H1 22/7/2016 14:40-14:50 120% 3(14:40-14:50) 

H2 22/7/2016 15:00-15:13 100% 2(15:00-15:05) 

H3 22/7/2016 15:24-15:30 40% 1(15:25) 

Pipe 

flushing 

Drain valve 21/6/2016 13:10-13:45 90% 6(3:10-13:35) 

Drain valve 22/6/2016 14:15-16:05 90% 21(14:15-15:55) 

Figure 5 depicts the change of TPR and FPR when the significance factor   varies on the interval 

[0.1,1]. Differing from other detection methods with a binary result (i.e., outlier or non-outlier), the 

FPR of this clustering-based method cannot reach 100% and is far less than 100% no matter how 

large the value of   is. The reason is that the method only identifies outliers among vectors with 

the lowest   rather than among all vectors. Therefore, Figure 5 is not a typical ROC curve. The 

method becomes more sensitive to bursts with the use of larger  . When   is larger than 0.3, all 

7 events can be identified successfully. Table 1 shows the number of detected outliers and the 

corresponding time at which detected outliers occur ( =0.5). Note that the TPR stays unchanged 

(below 100%) although the value of   increases from 0.6 to 1. As shown in the grey area of 

Figure 1, pressure tends to get back to normal level at the end of a burst. The corresponding vectors 

are similar to normal vectors so they cannot be distinguished (as shown in the detection result in 

Table 1).  

 

Figure 5. Change of true positive rate and false positive rate with the increase of significance 

facator. 

FPR, which should be kept small, also becomes larger when   increases. A large FPR will cause 

more false alarms and make the detection method unreliable. Consequently, the value of   should 

be relatively small and a proper alarm rule needs to be set. When   equals 0.5, 951 vectors were 

identified as outliers and 86 of them were caused by missing data. The remaining 865 outliers were 
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classified into 3 conditions: a) detected with a single outlier; b) detected with 2 continuous outliers; 

c) detected with more than 2 continuous outliers. A total of 599, 126, and 140 outliers belong to 

conditions a, b, and c respectively. Considering the less stationary nature of pressure data [9], the 

large number of condition a and condition b is not unexpected. To reduce false alarms, only outliers 

that belong to condition c will trigger alarms. In other words, only 3 or more continuously detected 

outliers are regarded as bursts. Therefore, 30 alarms were raised by the 140 outliers of condition c 

and 5 of them were triggered by events listed in Table 1. The other 25 alarms might be caused by 

unexpected demand of large consumers or unrecorded events. Under this alarm rule, the method 

cannot raise alarms for the two burst simulations with short duration even though some outliers 

were detected. Furthermore, the decrease in the number of alarms is at expense of the increase of 

detection time. 

4 CONCLUSIONS 

The method proposed in this paper successfully utilised data from multiple pressure sensors to 

detect real and simulated bursts in a DMA. The conclusions of this work and suggestions for future 

work are listed below: 

1. Temporal varying correlation exists between the data from multiple pressure sensors in a single 

DMA although the variation range of data is wide with the change in time. Cosine distance is a 

sutitable dissimilarity measure for this kind of time series data. It makes burst-induced data 

distinguishable from a normal dataset (i.e., reference matrix) which can be formed by only one 

day’s worth of pressure data. 

2. Facilitated by a proper dissmilarity measure, clustering algorithm is a useful tool to detect bursts. 

The clustering-based method is sensitive to large bursts (larger than 40% of average daily DMA 

flow) with a relatively small significance factor (e.g., 0.4-0.5). It still needs to be tested whether 

this method can identify relatively small bursts. 

3. A pressure sensor is more sensitive to bursts that occur near it. Further work could focus on 

mining location information after a burst is detected using this method. 
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