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ABSTRACT  

Recent developments in (near) real-time sensor applications have the potential to provide operators 

and managers with useful information on drinking water distribution supply and need of its 

maintenance. A systematic methodology based on causal inference from observational data is 

proposed to increase knowledge of water supply distribution systems equipped with sensor 

networks. This methodology can be used  to help identify deviations from expected operation of 

water supply and sensor infrastructure, using only observational data. We outline the first steps of 

two distinct procedures that use data from a sensor network, to infer a map of a causal dependence 

structure. These procedures are applied to scenario studies where an unexpected change in 

operation occurs, i.e. a valve status is different and a sensor bias is introduced. A draft outline of 

future steps is given that could improve and validate the methodology. 
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1 BACKGROUND 

Recent developments in (near) real-time sensor applications have the potential to provide operators 

and managers with useful information on drinking water distribution supply and need of 

maintenance. Although implementation of sensor networks is not yet common practice, numerous 

numerical studies have demonstrated potential benefits of a sensor network, such as real time event 

detection of water quality contaminations (e.g. [1]) or leakage and pipe burst detection and 

localization (e.g. [2]). We also foresee that sensor networks will provide operational benefits such as 

improving distribution network models and the effectiveness of sensor networks. Automated 

monitoring and control of water supply services using sensor data and models imply a strong 

reliability on sensor data and network models. This reliance poses a challenge because knowledge 

of distribution networks is not always correct, comprehensive, and up-to-date and sensors are 

known to be imperfect (false positives and negatives, drift and failure, etc.). A systematic 

methodology to increase actual knowledge of the systems can help identify deviations from 

expected operation of the drinking water distribution and sensor infrastructure.  

A novel method investigated in this work is aimed at quantifying operational benefits using a 

heuristic approach and testing the methodology with a laboratory scale model of a real-life 

distribution network. In this paper, we focus on the development of a graph theoretical procedure 

aimed at improving the quality of system information and models that rely on such information. We 

outline the first steps of two distinct procedures to use only observational data, i.e. data from a 

sensor network, to infer a map of a causal dependence structure. We test these steps and give a draft 

outline of the remaining steps that could improve the methodology in the identification of 

deviations from expected operation in water supply networks. In order to provide tangible and 
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quantified benefits of a sensor network we narrow the work down to two practical applications, i.e. 

(C1) detection of changed valve statuses  and (C2) detection of erroneous sensor measurements.  

2 METHODS 

The information flow of a sensor network provides the basis of our procedure to infer a graph 

model for a baseline situation, i.e. where the operation of the drinking water distribution network 

(DWDN) is assumed normal. It is our hypothesis that any deviations with respect to this baseline 

case (BC) occurring from sensor faults, leakage or changed valve status values, etc. is revealed as a 

change in the newly estimated graph. Hence the estimated information flow is presented as a graph, 

i.e. each node represents a (sensor) variable such as flow, pressure, or electrical conductivity, and 

each edge represents a correlation (undirected graph) or a direct cause between nodes (directed 

acyclic graph, DAG). It is assumed that there are no feedback loops, hence acyclic, or hidden 

variables. We implement and evaluate two notions of causality inference from synthetic DWDN 

data by the following steps: 

1. a framework for graph theoretical analysis is set up and written in the Python programming 

language to determine if there are causal relationships in the sensor network (Figure 1). The 

framework consists of calls to the R statistical software package (via python module rpy2), 

calls to EPANET (epanettools), calls to statistical tests (stattools) and methods to construct 

and visualise the sensor and DWDN via the python module networkx. 

The framework enables testing and evaluating two procedures (Figure 2): 

 a graph theoretic methodology that uses the Peter and Clark (PC)-algorithm directly 

onto sensor data [3,4]. Conceptually, the algorithm starts with a complete, undirected 

graph between each node (here: each sensor signal) and recursively deletes edges 

based on Markov conditional independence tests until a minimal set of connected 

nodes is reached. The R package pcalg provides pre-defined functions to perform 

these independence tests on Gaussian, discrete or binary data and discover directed 

(acyclic) graphs. The PC algorithm is evaluated on data which is pre-processed to 

remove time lags. These time lags are (manually) estimated on the basis of delays in 

step response signals. This procedure will be referred to as PPC; 

 a Monte Carlo (MC) analysis of Granger causality tests and detected time lags for 

every sensor couple in the set of sensors (nodes) using the sensor data. Granger 

causality means that ‘X Granger-causes Y, if Y can be better predicted using the 

histories of both X and Y than it can by using the history of Y alone’. The same data 

as in the PPC procedure is used, but now the lag estimation is part of the causality 

tests. Based on a set of estimated lags and causal relations between nodes, a subset of 

most likely occurring lags (and thus Granger-causal relations) are selected to draw a 

directed graph. This will be further called the PMC procedure.  

2. a DWDN model (EPANET) was constructed with a layout and sensor network depicted  in 

Figure 2. The DWDN represents an experimental scale model of a real-life supply zone [5]. 

It includes two main water supply sources with different water quality in the West (Noard-

Burgum, NB) and South (Wirdum) and the transport and large distribution mains (of real-

life diameters of >300 mm). Demands are represented by 31 demand nodes. A tank is 

included, but is not actively taken into account in the calculations. Three sensors (X28, X42, 
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X32) are placed along a North-side transport main of eastward water flow from the water 

supply source in the West, one sensor (X280) is placed near the centre of the DWDN, one 

(X335) near the water supply source in the South and at the Eastside (X113). All sensors 

measure water quality, i.e. the concentration of a chemical tracer. 

3. We define and evaluate test conditions (variation in signals, number of sensors) and define 

the baseline scenario BC and case scenarios C1 and C2:  

 BC: 1 week and 4 weeks of tracer data is simulated by EPANET with a 15 minutes 

sampling frequency to check the sensitivity of the method to the amount of available 

data. Repeating weekly demand patterns are set. A chemical tracer is supplied at NB 

with an average concentration value of 3.0 and perturbed with Gaussian noise with 

standard deviation 0.1. Similarly, the water supply at Wirdum contains a tracer with 

an average concentration of 1.0 and a Gaussian noise perturbation with a standard 

deviation of 0.1. 

 C1: similar to BC with 4 weeks of data, except that one valve, i.e. valve V52 (Figure 

2) is closed. 

 C2: similar to BC with 4 weeks of data, except that one sensor, i.e. sensor X42 

(Figure 2) has a bias of +1.0 during a period of 168 hours from the start of the 

simulation. 

4. Simulation tests of cases C1 and C2 for an EPANET model of a water supply distribution 

network (DWDN) in order to determine the performance and applicability of the procedures. 

 

Figure 1. Scheme of followed procedures to estimate a causal structure between sensor nodes in a 

DWDS.   
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Figure 2. Layout of the EPANET scale model. Pipe widths are plotted on a gray scale, flow 

directions are shown by arrows, and the concentration of tracer chemicals are shown by  the purple 

colors. Sensors are placed at nodes X<numeric value>. At Wirdum, the average tracer 

concentration is 1.0, at Noardburgum the average concentration value is 3.0. The valve used in 

scenario C1 is shown by the blue symbol labeled V52. 

3 RESULTS 

3.1 PMC Method 

The results with the PMC method vary to a large extent. While the results were promising for a 

small, academic example with 4 nodes and Gaussian noise; the method does not work well with 

(sensor) data simulated with EPANET. Lags are only estimated between X42 pointing towards X28 

(lag: 3 hours) and X32 pointing towards X28 (lag: 1.45h) and are off from the estimated lags 

deduced from step responses and the causal effect is exactly in the opposite direction (X28 to X42: 

3.75 hours). 

3.2 PPC Method 

The PPC procedure relies on the R library ‘pcalg’ to infer causal maps (directed graphs). Results are 

shown in Figure 3. When no causal relation between two nodes is found, no edge is drawn. The 

conditional independence tests are run with an uncertainty threshold of 5% (orange lines). Results 

of the simulated baseline scenario (BC) are shown for the case where water quality data during a 

period of 1 week is available (Figure 3a) and a period of 4 weeks (Figure 3b). Based on the 

simulation in EPANET (Figure 2), we expect that information flows from Wirdum (no sensor 

present) via X335 to X113 and most of the time to X280, while information from reservoir 
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Noardburgum (NB) will flow via X28 towards X42, passing V52 towards X32 and possibly from 

X42 or X32 to X280.  

The BC lag corrected case when using 1 week of chemical tracer data is shown in Figure 3a. In this 

graph, the algorithm finds that X335 is correlated to X113, but no causality is found. (Partial) 

correlation is also resolved between nodes X28 – X42. No (causal) relation between X42 – X32 is 

found. When a 4 week period of data is available, the graph looks different (Figure 3b). The edge 

X42 – X32 is now added, and the information flow is correctly resolved towards X32. Furthermore, 

X32 is apparently effected by X280. The direction in causality is remarkable, because from the 

EPANET simulations we know that X280 is lagging 8.75 hours w.r.t. the NB reservoir, while X32 

has a delay of 7.75 hours. Note that no correlation or causality could be inferred from data of X335 

and X113. 

 (a) 

 

 

(b) 

 

 
 

Figure 3: DAG representation of the sensor network observations (orange coloured edges, a stub 

represents an arrowhead) projected onto the scale model (blue) by PPC for the BC scenario.  DAG 

reconstruction by (a) 1 week and (b) 4 weeks of data , respectively. The lower panels zoom in on the  

region of the Northern trajectory (X28 > X42 > X32). 

 

Figure 4 shows the results of the PPC procedure applied to the practical cases of an unexpected 

valve status (C1) and sensor failure (C2). For the case C1, the graph shows that information is 

obstructed between the sensors in the direct vicinity of the valve (X42, X32, X280). Compared to 

Figure 2b, the procedure indicates an interrupted flow of information in the vicinity of the valve that 

was closed in this simulation (X42 – X32 and X32 – X280), while the other connections and some 

of the directions remain unchanged. The inferred graph of scenario C2 in Figure 4 also differs from 

the BC graph (Figure 3b), but now in the node set X28, X42, X32 and X280. Apparently, the 

introduced bias in sensor X42 leads to a re-shuffling of links: X42 now has a causal effect on X28 
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and X28 has an effect on X32. It should be noted that the perturbed signal of X42 is not Gaussian 

anymore, which violates an important assumption for the independence tests of the PC algorithm. 

These preliminary results must be substantiated with further tests, but suggest that the followed 

approach can be used to detect deviations from expected operation, even with a limited number of 

sensors. 

(C1) 

 

 

(C2) 

 

 
 

Figure 4: graph notation as Figure 3, for practical applications of an unexpected valve status (C1) 

and erroneous sensor measurements (C2). The lower panels show the zoomed in region of the 

Northern trajectory (X28 > X42 > X32). 

4 DISCUSSION AND FUTURE STEPS 

While the PC algorithm as introduced by Peter and Clark is - by definition - not equipped for lagged 

signals, a drawback in applying the PMC method to the presented application is that it relies on a 

heuristic approach that searches for a high probability in connectivity based on time lag information 

between node couples, but not for the whole network. As a consequence, there is a significant risk 

of introducing inconsistencies in the resulting graph with respect to the sum of estimated lags if 

interconnected nodes are present. Furthermore, it is known that Granger causality tests should be 

applied to data that is stationary, and, possible co-integration should be corrected first. However, in 

this work, stationarity is not guaranteed due to several reasons, e.g. possible mixing of water, 

changing flow directions during the course of a day or when bias occurs (as is the case for C2). 

Based on experiences with both techniques, we propose to pursue the following steps to improve 

the method: 

 Check whether the use of other data (flow, pressure or other water quality data) reduces the 

amount of data needed to capture the information flow.  
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 Extend the PMC procedure with (i) a check whether the data is stationary, semi-stationary over 

a time window, or has an order of integration with the augmented Dickey–Fuller test and 

proceed with (ii) the estimation of a VAR (vector autoregressive regression) using the procedure 

as outlined in [6] and (iii) check for Granger causality.  

 For PPC, there are different options to cope with lagged sensor signals:  

i. With the assumption that the unlagged (source) signal is the only cause for the lagged 

signal and there is no co-integration or autoregression present, time delays can be 

estimated by minimisation of the squared difference of the unlagged (source) signal 

and lagged signal [7]. This rather straightforward approach resembles the work here, 

except that the time delays are now estimated from data. 

ii. As a first step, it is assumed that all sensor signals can be modelled by a structured 

VAR (SVAR) process, i.e. A(L)Yt = Et, where Yt is a n x 1 column vector of n sensor 

variables at time step t; A is a n x n conformable matrix whose terms are polynomials 

in a fixed lag value L, and E is a column vector of errors at time t. The idea is to 

generate SVAR models by a Monte Carlo approach with N realisations of A,  

estimate the SVAR and use the residuals (filtered Yt minus Yt) as an input for the PC 

algorithm in each realisation. Note that N is typically in the order of 10
4
 to 10

5
. Then, 

the selected graph is compared to a reference graph (‘PC true graph’), i.e. the graph 

that indexes the equivalence class to which the true graph belongs. Finally, every 

possible link is evaluated. See [8] for more details. 

In addition, we plan to apply the technique to a real-life scale model of a distribution network from 

the Dutch water company Vitens and evaluate the results to relate this new information to tangible 

benefits. The use of a scale model (as opposed to numerical simulations) allows for testing the 

methodology under (close-to) real-life circumstances, including realistic imperfections of sensors, 

drinking water and pipes in a controlled environment. Another research subject is to address the 

optimal sensor placement problem based on maximising causal inference by the PMC or PPC 

method. 

5 CONCLUDING REMARKS 

 A Monte Carlo approach for testing Granger causality between any sensor pair followed by 

selection of the most frequently occurring lags did not yield satisfactory results. Pre-processing, 

lag consistency checks and further tests are needed to validate whether this approach holds 

promise. 

 The PC algorithm seems promising to infer (changes in) causalities from sensor network data of 

a DWDN, at least in a simulated environment where source patterns of water quality are defined 

as signals with Gaussian noise and the observation output signals at the sensor node positions 

are corrected for time lags. 

 The PC algorithm is sensitive to the ‘information content’ of the signal, or more generally 

speaking, whether the system excitation was sufficient. Part of the causality in the sensor 

network was not resolved when either the signal duration was too short or when the standard 

deviation in the noise sequence was relatively small. 
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