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ABSTRACT 
Acoustic leak detection in water distributions systems has been reviewed and validated for decades
in various laboratory and field settings.  However, the existing systems rely heavily on detailed
knowledge  of  the  pipe  system,  an  assumption  of  ideal  conditions,  as  well  as direct  access  to
infrastructure pipelines. This paper presents an experimental investigation that addresses the need
of minimally invasive water distribution monitoring in cold climates. Monitoring in cold climates is
achieved with a permanent dry barrel hydrant mounted passive sensor system. The sensor system
sits  within  the  water  column  while  still  being  accessible  via  the  hydrant.  Lab  tests  utilize  a
retrofitted  hydrant  and  pipe  system. Experiments  show the  effectiveness  of  using  fire  hydrant
mounted sensors in leak detection. Acoustic signals due to simulated leaks are measured, and a
one-class support vector machine (OCSVM) classification methodology is applied. Results showed
that a simulated leak can be detected with a 97% classification accuracy.
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1 INTRODUCTION 

Growing populations,  climate change,  and deteriorating water  supply infrastructure are exerting
unprecedented  demands  on  water  resources  worldwide.  A  core  component  of  water  supply
infrastructure  includes  the  extensive  network  of  aging  underground  pipes  that  deliver  treated
drinking water to consumers across cities. Facing this reality government/ regulatory bodies and
water  utilities  are  becoming  increasingly  aware  of  the  importance  of  effectively  assessing  and
controlling water losses. Water losses, referred to as unaccounted-for-water or non-revenue water,
are categorized into physical losses and non-physical losses from their water distribution networks
(WDNs).  Physical  losses  include  leakage  in  transmission  and  distribution  lines,  leakage  and
overflows at storage tanks, and leakage on service connections up to consumer meters, while non-
physical losses may include unauthorized consumption or metering inaccuracies. 

While the primary cause of leaks in water distribution pipelines are largely speculative, it is widely
assumed  that  the  main  contributing  factors  include  temperature  (seasonal  freeze-thaw),  water
demand stress,  the occurrence  of  hydraulic  transients,  and pipeline deterioration  and corrosion.
Most leak, large or small, detection methods in use today are inspection  based and not meant for
long-term  monitoring.  These  inspection  techniques  are  fairly  accurate  and  well  established,
however, they are time consuming and therefore are quite costly. They involve an inspector on site
with their inspection tool of choice to inspect regions of pipe one section at a time. Large lengths of
pipe are routinely excavated in order to find and repair small defective sections, often as a result of
complaints once a leak (or burst) has surfaced and is evident visually. While effective, many current
inspection methods are intrusive and often require a part of the WDN to be shut down temporarily
during investigations. Long-term monitoring for  leaks requires a fundamental re-thinking of both
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the technology as well as the application procedure. Ideally, results of such long-term monitoring
should then be followed by inspection methods to pin-point the exact location(s) and repair. Any
alterations to existing water distribution infrastructure must be done mindfully so as to not disrupt
the pipe system.  Most importantly, such a monitoring system should be  be capable of operating
year-round. While the cost may be higher for the initial installation, the long-term costs would be
reduced when the detrimental effects of leaks and the cost of spot inspections across the system are
taken into account.

While  acoustic leak detection in water distribution systems is a well-researched topic  [1, 2, 3],  a
long-term monitoring system capable of year-round operation in cold climates is unavailable. From
an analysis  point  of  view,  most well-established research  methodologies  fall  primarily  into the
model or predictive-based methods, briefly discussed below. Literature pertaining to data-driven
learning methods with water system applications is  comparatively  limited. A number of machine
learning methods can be applied to leak detection in pipes, the most common and promising of
which include Support Vector Machines (SVM), Neural Networks (NN), and Bayesian Learning.
The application of a classification method involves knowing the number of classes  (e.g.,  a leak
versus  no  leak  class),  gathering  system response  data  across  all  classes  and then  an  extensive
supervised training period.  In the lab, conducting these experiments to gather the necessary training
data across all classes can be a challenge.  In the field, it is usually not practical or possible to
collect enough system response data in all  classes making it  quite difficult to  implement these
methodologies in the field. In this paper, we present the identification of leaks as an event detection
task, carried out through anomaly detection using a one-class support vector machine (OCSVM). 

In  what  follows,  we  describe  the  related  state  of  the  art  relevant  research,  and  present  the
methodology and results for application of a OCSVM in a laboratory setting. 

1.1 Review of Related Work

A number of studies, e.g.,  [4], have applied artificial neural networks (ANNs) to detecting pipe
bursts. This process yields effective classification, however, significant historical data is generally
needed for the training process. This is not always available, limiting its application, or requiring an
extended training  period.  [5,  6,  7]  also  reviewed  the  application  of  ANN method  and  yielded
promising results for pipe burst detection, however the same limitations were found. ANN is a good
method  for  obtaining  reasonable  predictions,  however  when  applied  to  WDNs,  extensive  data
history and extended training periods, making this training process generally very computationally
expensive. In the realm of model-based data-driven methods,  [8] found that the adaptive Kalman
filtering improved the performance of ANNs while reducing the training period time.  

SVMs as binary classification method has been reviewed by many researchers, including  [9, 10,
11]. Others, such as  [12],who reviewed traditional two-class SVM in the time domain, in which
leaks and non leak cases are trained and tested, yielded high accuracies of 97\%. This was done in a
field  case  study  situation  and  used  an  interesting  Principal  Component  Analysis  (PCA)  based
feature selection method.  [13] yielded similar results of 78% - 94% accuracy when applying k-
nearest neighbor (KNN), SVM and Gaussian mixture (GM) models for the binary classification of
leak and non-leak cases.  Another  non-numerical  modeling method,  namely Bayesian inference,
involves the probabilistic classification of a current state belonging to one of the previously known
cases, the case in which the current state shares the highest probability. This has been reviewed
extensively by [14].
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A major limitation in all the aforementioned classification techniques is the necessity of known
classes.  While  studies  have  effectively  classified  cases  with  high  accuracy,  they  all  require
knowledge of all possible cases during the training period. This is not always readily available.
Furthermore, it is not robust or easily adaptable.

This  paper  presents  the  application  of  an  anomaly  detection  algorithm  in  order  to  detect  the
presence  of  a  leak.  This  method  involves  modeling  the  normal  state  of  the  system,  enabling
deviations from the known norm to be detected, i.e. the detection of an event which strays from the
system's normal state. This is an advantage compared to traditional classifications algorithms as it
can detect previously unknown events. The one-class SVM methodology developed by [15] has
been applied to a number of structural health monitoring applications, however it has not yet been
applied to water, WDNs, or WDS event detection.

2 OVERVIEW OF LEAK DETECTION METHODOLOGY

The event detection methodology presented in this paper was utilized to study the effectiveness of a
fire hydrant mounted hydrophone sensor, as seen in Figure 1, for leak detection with a OCSVM
used for data processing. 

Figure 1. Fire hydrant mounted hydrophone sensor

The event detection approach requires the following four steps, the first three of which pertain to
training and the fourth encompasses testing. These steps are as follows,

1) acquisition of raw hydro-acoustic data from the water distribution system using the hydrant
mounted sensor;

2) acoustic data feature extraction;

3) statistical pattern recognition via a OCSVM classification scheme using the above features,
training solely with ambient data; and,

4) testing on ambient and non-ambient cases.

This classifier is trained using feature sets extracted from time windows of raw hydro-acoustic data
gathered from tests on the baseline condition of the system.  
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2.1 Raw Data Acquisition

The hydrant mounted sensor system overcomes many challenges and limitations associated with
long term passive monitoring of WDN systems. The primary benefit in the use of hydrophones is
that leaks typically generate frequencies which can be carried much further inside the pressurized
water pipes. The associated hardware for processing includes a raspberry Pi in which the data is
acquired and stored onto, wirelessly transmitted and automatically processed on another computer.

A laboratory experimental set up was designed to evaluate this sensor system in a section of a water
distribution system, as seen in Figure 2. In this system the simulated leaks are represented by ½ inch
valves. This system relatively represents field conditions, as it links to the city’s water system, this
all pressure fluctuations and background noise are relatively representative of conditions that will
be experienced in the field.

Figure 2. Laboratory Test Setup Schematic, approximately 50 ft in length

Baseline data is collected while the system is pressurized and all valves are closed. This is required
to train the classifier prior to the live monitoring phase. This baseline is not meant to represent the
perfectly intact, original state of the system. In fact, it captures the current state of the system in
order to determine when it degrades from its current state. As such, it is not meant to be able to
determine the presence of existing leaks, only the development of new leaks should be detected in
this system.  

A  parametric  study  was  carried  out  in  order  to  determine  the  effect  of  time  resolution  on
classification accuracy. Data sets of 30 seconds were collected, thus time length were varied up to
30 seconds. Experimentally it was determined that 1.25 second data set lengths yielded the highest
accuracies, with anywhere from 1 to 3 seconds yielding excellent accuracies. 

The raw data consists of data sets 1.25 seconds in length, sampled at 1350 Hz, and is pre-processed
by shifting the mean to zero and removing outliers at 3 standard deviations from the data; this can
be  seen  in  Figure  3.  The  fire  hydrant  mounted  custom hydrophone  also  includes  20  dB gain
amplification built in. 
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Figure 3. Sample time domain of ambient data, with 3 STD threshold

2.2 Feature Extraction

The statistical  pattern recognition  methodology applied  in  this  paper  is  one-class  kernel  based,
utilizing information pertaining only to the sensor at one specific location. That is,  the selected
features must not require comparison with previously computed features and must only require
information from the one location and not  multiple  sensor data  sets.  The features used for the
classification  analyses  are  listed  in  Table  1.  Among  all  features  considered,  using  the  mutual
information  algorithm  [16]  was  applied  in  order  to  determine  which  features  were  the  most
statistically independent of one another, this yielded the list of 6 features found in Table 1. These
features are then converted into a vector that represent each 1.25 second data set. These feature
vectors provide more comprehensive information than any one feature individually [17].  

Table 1. Time Domain Features

Feature Expression

Maximum

Minimum

Standard Deviation

Root-Mean Square
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Amplitude Square

Root Amplitude Square

2.3 Anomaly Detection

Anomaly detection is a small  subclass of machine learning within supervised and unsupervised
learning methods. It encompasses the field of outlier detection. It is the identification of events
which do not conform to an expected pattern in a data set. This is extremely useful for applications
in which the damaged data is not available a priori. It is typically unrealistic to train for all possible
scenarios,  since  in  many  complex  systems all  scenarios  simply  are  not  known,  similarly  their
signatures may change based on proximity or system material.  This  application of  an anomaly
detection  algorithm  as  opposed  to  a  multi-class  classification  algorithm  is  more  realistic  for
complex, real-world systems. 

In this experimental test case, in order to maximize the robustness of implementation of the leak
detection system, an unsupervised anomaly detection system was chosen for this application. This
includes  over  half  a  dozen  possible  general  algorithms.  The  preference  of  different  methods
depends primarily on the data set and parameters. The different methods have little advantage over
one  another  when  compared  across  many  data  sets  and parameters.  Since  the  long  term field
implementation of this system will comprise of a relatively small data set, the OCSVM learning
methods  was  selected  as  a  well-established  anomaly  detection  algorithm  which  is  ideal  and
applicable given the data set. 

The feature sets are used as input in the OCSVM anomaly detection methodology. This method
requires only training data from the baseline state of the system in order to determine if a new
instance feature vector is abnormal. This is done by modeling the feature vectors in a non-linear
feature space and finding the location and size of the circular hyperplane that encompasses the
baseline case. It is problem related to density estimation, enclosing an area of high density. The
boundary is chosen based on the probability of a point landing within the region. 

2.4 OCSVM Background

Building on the foundation of the two class support vector machine method [18], the OCSVM
methodology maximizes the distance from the spherical  hyperplane to the origin.  Essentially  it
created a two class SVM in which the training point are represented as one class, and everywhere
else represents the second class. The minimization function changes slightly creating a hypersphere
characterized by a center, a, and a radius, R, in which R2 will be minimized [19]. 

The original two class SVM has an objective function minimization formula as follows,
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Subject to:  , 

Where y is +1 or -1 depending on classification,  is the normal vector to the hyperplane,  is 
the kernel transform in hyperspace, b is related to the offset of the hyperplane from the origin,  is 
the minimum number of nonnegative numbers, and C is the parameter which is used to determine 
the hyperplane’s smoothness.
 
The OCSVM’s quadratic program then becomes [19],

Subject to:  ,  

3 EXPERIMENTAL RESULTS

The efficacy of leak detection using the OCSVM methodology will now be demonstrated using data
acquired from the experimental laboratory test set up depicted in Figure 2, developed specifically
for the purpose of testing and validating the leak detection methodology with hydrant mounted
sensors.  

Experiments were carried out in which acoustic data was recorded during a simulated leak event
from a ½ inch value. The data set consists of 75 ambient cases and 30 leak cases, 60% of the
ambient cases were used for training and 40% for testing, making the test set consist of 30 ambient
and 30 leak cases. The system is also set up to determine the state to determine the state of a new
instance as it is collected. 

The leak detection via  OCSVM anomaly detection yielded a  97% classification accuracy.  This
accuracy is detailed in the truth table shown as Table 2. A truth table is a better representation of
accuracy, breaking it down into accurate and inaccurate classifications of the two cases; in which
basic accuracy comes from the number of correctly classified points, or “True” values, while the
misclassified points, or “False” cases, represent the remaining percentage of the points.

Table 2. OCSVM Classification Truth Table

Case % of case correctly
classified (True) 

% of case incorrectly
classified (False)

Ambient 97% 3%

Leak 97% 3%

These  results  are  depicted  in  Figure  4,  using  a  dimensionality  reduction  algorithm in  order  to
represent the clusters in two dimensional feature space. These results show a very low false positive
rate, and false negative rate. There is a trade-off between these two cases in which it is a waste of
resources to deploy inspectors to check in a false negative scenario, however in a false positive
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scenario a leak is occurring and the system simply isn’t detecting it. Thus ideally the false positive
rate should be minimized above all else, provided the false negative is acceptable infrequent. 

Figure 4. OCSVM Ambient versus Leak Classification Results, including both training and testing
data sets

4 CONCLUSIONS

A novel application of OCSVM anomaly detection has been reviewed in this paper. Using this
algorithm, a fully automated anomaly detection system has been implemented. The efficacy of the
algorithm  for  this  application  is  demonstrated using  data  taken  from  a  field  representative,
laboratory test bed with a ½ inch valve used to represent a relatively small leak scenario. A binary
decision boundary was created using only baseline data in order to classify if the new event is
typical for baseline data or abnormal. In conclusion, this methodology is ideal for leak detection in
water distribution networks since it is robust enough to be deployed at any location as its baselines
as trained based on the location in which it is placed, and anomalies detected based solely off these
baselines. 
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