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ABSTRACT 
This study presents a physarum polycephalum-inspired mathematical model for the solution of the
problem  of  least  cost  design  of  water  distribution  systems.  We  propose  modifications  of  the
classical physarum polycephalum mathematical model to adjust it  for water distribution system
optimization. The methodology was tested on two small-scale benchmark examples: two-loop and
Hanoi  networks.  In  the both cases,  the obtained results  are 10-11% above the known optimal
solution, however, the number of iterations required to achieve them are exceptionally small. The
proposed approach should be further tested for its applicability to the larger networks. Altogether,
the method can serve as a good and easily obtainable first approximation for the least cost water
distribution system design. 
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1 BACKGROUND 

Attention to the problem of least cost design of water distribution systems (WDSs) dates back to
1960s [1] and continues to present days [2]. During last two decade, classical linear, nonlinear, and
dynamic programming optimization approaches gave place to heuristics and metaheuristics (see [3]
for an example review). Later methods gained popularity due to their plasticity and ability to find
close-to-optimal  solutions  for  wide variety of problem formulations  and, in  particular,  in  cases
where classical optimization methods fail or cannot be applied. This family of methods includes
various  natural  phenomenon-  or  processes-inspired  algorithms  that  utilize  the  astonishing
characteristic of nature to exploit the environment based not on the sophisticated reasoning but
rather  following  a  set  of  simple  rules.  Behind  heuristic  optimization  methods  lies  an  idea  of
decomposition of the problem into two levels: a network simulation level that is responsible for
flow, pressure, and cost analysis for a given set of design variables, and an optimization level that is
responsible for successive modification of the design variables toward the sought solution [4]. In
other words, evolution of the decision variables takes place in a space of possible solutions with
simulation engine providing a measure of fitting for each solution. To the contrary, the proposed
approach initiates the process of development and evolution of a modeled slime mold  Physarum
polycephalum in the space of WDS itself, translating WDS components to world-creating attributes
of a living creature.

Physarum polycephalum was  introduced  for  efficient  maze  solving  [5]  and  later  extended  for
network  formation  that  was  comparable  in  the  obtained  results  to  real  Tokyo  rail  system “in
efficiency, fault tolerance, and cost” [6]. Noteworthy, this remarkable outcome was achieved by an
organism that lacks a nervous system of any kind; in fact, it is a single-celled amoeboid organism.
This inspired researcher to construct a mathematical model that imitates the slime mold behavior [6,
7]. These studies introduced physarum polycephalum mathematical model to solve the Steiner tree
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problem – an important network design NP-hard problem and the minimal exposure problem in
wireless sensor networks [7]. The main funding of the study is the confirmed ability of this low
complexity algorithm to achieve good performance. Later, the model was improved by introducing
an  energy  term  [8]  for  more  realistic  representation  of  the  observed  biological  effects. In
comparison  to  other  methodologies  for  the  shortest  path  problem,  improved  physarum
polycephalum  algorithm outperforms  the  previously  developed  basic  model  as  well  as  the  ant
colony  optimization  algorithm  on  running  time  and  number  of  iterations.  Compared  with  an
algorithm specifically developed for the shortest path problem (Dijkstra algorithm), the improved
physarum polycephalum algorithm can find more than one shortest path at the same time.

In this  study, we attempt to adjust  the algorithm for the  least  cost design of water distribution
systems problem.  To  authors’  knowledge,  this  is  the  first  attempt  to  utilize  the  physarum
polycephalum-inspired algorithm for WDS optimization. Despite the fact that the achieved solution
is higher than known solutions for the benchmark case studies, its value cannot be achieved in
random search within a reasonable amount of time. Moreover, the number of iterations required to
obtain the solution is very small, which can be a promising sign for further use of the algorithm for
an easily obtainable first approximation for the optimal solution.

2 METHODS
A mathematical model for the physarum polycephalum-inspired algorithm (hereinafter, slime mold
model) is based on the methodology presented in [8]. According to it, the organism is represented as
a graph with the flow in its tubular edges approximated by Poiseuille flow
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where  Qij is the flux through the edge between the nodes  i and  j,  Dij is the conductivity of the
corresponding edge and Lij is its length, and pi is the pressure at the node i. The inflow and outflow
are balanced at each node. The evolution of the organism is represented by the change in the edges’
conductivity as a function of the flux through the corresponding edge. 
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where � is a decay rate of the edge tube. Usually, the used function is the absolute value of the flux
and r = 1, resulting in the following expression for the conductivity change between iterations n and
n + 1
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To adjust the algorithm for the solution of the shortest path problem, the flux function from the Eq.
2  is  modified  and  a  new  term  is  introduced  that  brings  more  biological  rationale  into  the
mathematical model [8]. In this study, the flux function is also changed to link the model to WDS
modeling while preserving the model as simple as possible. The resulting conductivity evolution
formula is
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where hij is the “hunger” coefficient for the edge between the nodes i and j, ΔHij is the head loss at
the corresponding edge and cij is the cost of this edge, and a is the cost coefficient.  
If imagining a slime mold developing and growing in the layout of a WDS, the flow direction
should be mentally reversed. A water source can be conceptualized as the creature’s center that
searches for “food” placed at the network nodes and represented by WDS actual demands. The
creature adjusts its tubes to obtain the “food” with the minimal losses. Then, we force an additional
dynamic change in the form of rising creature’s “hunger” if the pressure at any node in the system is
below the predefined minimum. 
Altogether, the following adjustments to the basic slime mold model were introduced:
(1) The head loss is used as a flux function. It is calculated using the actual Hazen-Williams head
loss formula 
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where Qij is the flux in m3/h, Cij is the Hazen-Williams coefficient, dij is the diameter in cm (from
the previous iteration), Lij is the length in km [12].

(2) The “hunger” coefficient hij was introduced to account for the feasibility of a solution. At each
iteration step, if the pressure at any nodes adjacent to the current edge is lower than the predefined
minimum pmin, the hunger coefficient is increased for the whole network and for the current edge by
the increments hg and hl correspondingly:
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This is a rather crude assumption implying that the pressure lower that the minimum at a certain
node in a WDS is directly influenced by an adjacent link whereas in reality, the critical link can be
located  anywhere  in  the  system.  However,  with  only  “global  hunger”  coefficient  uniformly
increasing in the whole network, the convergence of the method deteriorated. 

(3)  To  connect  the  conductivity  term  D to  the  diameter  d,  the  adjustment  coefficient  b was
introduced, such that 

D b d  (7)

since in real WDS the relation d : L is very low and had to be adjusted for use in the Eq. 4. The
coefficient remains constant for given network. 

(4) To account for pipe pricing, an additional term was introduced in the Eq. 4 in comparison to the
Eq. 3.  The cost term cij forces the conductivity to change in inverse proportion to the corresponding
edge diameter cost with a weighting coefficient a. 

Based on the modifications described above, the main procedures of the slime model for the WDS
pipe sizing problem are given in Figure 1.

It can be argued that the presented model solves weighted multiobjective optimization problem with
the minimum head loss (responsible for the feasibility of the solution) and minimum cost objectives
and hij and a as dynamic weight coefficients. 
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Figure 1. Slime mold algorithm for WDS least cost design

3 IMPLEMENTATION OF THE SLIME MOLD ALGORITHM 

The developed algorithm was implemented for two small-scale benchmark WDSs: the two-loop and
the Hanoi  networks.  Due to  space limitation,  detailed system descriptions  are  omitted.  Layout,
system parameters, and the reference to the history of optimal solutions of the two-loop and the
Hanoi networks can be found, for example in [10]. 

There are two approaches in literature for pipe diameter selection. In one, a diameter should be
selected for each pipe, and in the second one, a diameter should be selected for a segment of an
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// s, t are 1 x n vectors of start and end nodes of each edge
// L is 1 x n vector of edge lengths
// e, q is 1 x m vector of nodal elevations and demands 
// Dav, Cost is 1 x nd vector of available diameters and their cost
ε    ← 10-4 ,  dt   ← 0.1
d0   ← dij

0  i, j = 1, 2, …, n //initial edge diameters 
Q0 ← Qij

0  i, j = 1, 2, …, n //initial edge flux
pi  ← 0  i =  k, …, m – k //unknown pressures
pi  ← pk  i =  1, 2, …k //known pressures
hg, hl ← 1  i =  1, 2, …n // initial edge hunger coefficients
a ← 0.1 // cost coefficient
b ← 3500 // conductivity coefficient
count ← 1
repeat 

count ← count + 1
Dij ← dij  b
Calculate pressure for every node using
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Calculate flux Qij for every edge using Eq. 1
Calculate head loss dHij using Eq. 5
Calculate “real” pressure at every node
 Prealj = Pi  – dHij
Update hunger coefficients hij using Eq. 6 and Preal for pressure
Calculate diameters dij(count) using Eq. 4
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Round dij(count) to the closest diameter from Dav
Calculate current cost

until |dij(count) – dij(count-1)| > ε   i, j = 1, 2, …, n
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unknown length of each pipe.  The first  approach is  used for this  study, and the corresponding
known best solutions are chosen for the comparison in the most cases. 

3.1 Two-loop network results
The resulting diameters and system cost obtained for the two-loop network in comparison to known
solutions and random search are given in Table 1. The slime mold algorithm results in the final cost
9.7% higher than the known best solution. However, this result is achieved within only 9 to 120
iteration (depending on starting point). This final cost cannot be found in a random search in over a
million iteration.

Table 1. Solutions for the two-loop network

Pipe
Diameter, inch

Alperovits and
Shamir [9]

Zhou et al. [10] Random 1,000,000
iterations

Slime mold model

1
2
3
4
5
6
7
8

20, 18
8, 6
18
8, 6
16

12, 10
6

6, 4

18
10
16
4
16
10
10
1

18
14
14
2
16
2
14
14

18
12
16
10
14
6
12
10

Cost ($) 479,525 419,000 470,000 460,000

The method convergence from the known “good” starting point (the starting point of the Alperovich
and Shamir method [9]) is given in Figure 2 for links 1, 2, 3, and 8. From a random starting point, it
takes the algorithm 75 iterations on average to converge. In 77 runs out of 100, the final solution is
the 460,000 or slightly worse solution with a 14-inch diameter of Pipe 2 instead of a 12-inch. For
some starting points, a 2-stage solution can benefit to the algorithm convergence. It takes only 6
iterations to converge from an intermediate solution to the best slime mold algorithm solution. 

The values of the coefficients used for this network are the following: b = 3500, a = 0.1, hg = 0.8,
hl = 4.2 and the “hunger” coefficients rise during the algorithm’s run from 1 to 6.6, 10.8 or 15 for
different edges of the network. 

Final pressures for all system nodes for the compared solutions are given in Table 2. The slime
mold model meets the minimum pressure constraint at Node 7. However, it fails to discover better
solution by decreasing the size of Pipe 8. It is worth noting that the final solution of the slime mold
model results in the sum head loss in the network equal to 30.85 m/km whereas the known best
solution by [10] results in the sum head loss 60.19 m/km by this confirming that head loss serves as
an essential part of the objective function. 
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Figure 2. Slime mold algorithm convergence, two-loop network

3.2 Model sensitivity 
The proposed algorithm was checked for its sensitivity to various model parameters. Coefficient b
can take values within a quite wide range without any effect on the algorithm’s convergence or its
rate. For this example,  b = 3500 was chosen for the two-loop network, and for b in [3405, 3950],
the algorithm converges to the indicated solution within 9 iterations from the good starting point.
Coefficients hg and hl seems to be interdepended: the algorithm converges with very similar rate (9
to  12 iterations)  for  (hg,  hl)  pairs  (0.3,  1.5),  (0.7,  3.5),  (1,  5),  and similar.  However,  in  cases
different from the finally chosen pair  (0.8,  4.2), the algorithm mostly converges to the slightly
worse solution with the final cost $467,000. 

Table 2. Pressure heads for the two-loop network

Node
Pressure, m

Alperovits and
Shamir [9]

Zhou et al. [10] Random 1,000,000 
iterations

Slime mold model

2
3
4
5
6
7

53.96
32.32
44.97
32.31
31.19
31.57

53.24
30.49
43.44
33.78
30.43
30.54

53.23
36.84
42.38
43.89
31.47
32.62

53.23
37.67
44.70
43.55
31.68
30. 53

Cost coefficient  a in the interval [0.05, 0.14] leads to the algorithm convergence to the indicated
solution. For this coefficient in the intervals [0, 0.04] and [0.15, 0.33], the algorithm converges to a
solution with the final cost $467,000 and for larger a, the cost part of the function in Eq. 4 prevails
leading to an infeasible solution.
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The sensitivity to the initial point is discussed in Section 3.1. Since the slime mold model does not
converge to the known best solution for a given network, the algorithm’s ability to result in several
feasible suboptimal solutions of similarly good quality can be seen as an advantage for providing
several options for further consideration. 

3.3 Hanoi network results 
Comparison to known solutions and random search for the Hanoi network are given in Table 3. The
solution obtained by the slime mold model is 11.5% higher than the known best solution; however,
it requires only 35 iterations on average and converges to the indicated solution in 93 cases out of
100. In comparison with random search, no feasible solution was found in 1 million iterations. For
this network, the following values of the model coefficients were used:  a = 0.1,  hg = 1,  gl = 5,
b = 8200. Evidently, only the conductivity-diameter adjustment coefficient b required alteration. In
fact, the pair (0.8 4.2) for the coefficients (hg, gl) results in even better solution -6.624 million
dollars, which is 9.4% higher than the known best solution, but is periodic for Pipe 6 and was
disregarded on this ground. 

Table 3. Solutions for the Hanoi network

Savic and
Walters [11]

Perelman 
et al. [12]

Zhou et 
al. [10] 

Random 
iterations

Slime mold
model

Number of iterations 1,000,000 2,500 300-600 1,000,000 35

Cost, $ millions 6.073 6.055 6.056 No feasible
solution

6.752

The algorithm’s convergence from a random initial point is given in Figure 3. Altogether, the slime
mold algorithm shows better performance when implemented for the Hanoi network than the two-
loop network. This can be connected to significantly lower available pipe diameter options (6 vs.
14) in the Hanoi example.

Figure 3. Slime mold algorithm convergence, Hanoi network
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4 CONCLUSIONS

This paper presents an attempt to adapt the  physarum polycephalum-inspired algorithm for WDS
least  cost  design.  Modifications  of  the  known  slime  mold  mathematical  model  construct  an
evolution function that comprises two parts: the head loss part that ensures solution feasibility and
the cost part that ensures total design cost minimization. The algorithm results in solutions of an
order of 10% higher than the known best solution; however, it requires a mere number of iterations
to  converge.  The  algorithm was  tested  on  two  small-scale  benchmark  networks.  Notably,  the
algorithms’ performance was better for the larger network. Another feature of the algorithm is its
ability to return several feasible solutions of similar quality with a change in the model parameters.
The  slime  mold  model  applicability  to  WDS  optimization  should  be  further  investigated,  in
particular,  in  its  applicability  and  performance  for  large-scale  networks  and  practical
worthwhileness of the proposed approach.
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