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ABSTRACT  

Fractals have been identified as a common feature of many natural and artificial systems that 
exhibit similar patterning at different scales. Understanding fractals is a critical aspect of decoding 
complex systems, as the pattern of such large systems can be revealed by identifying only a small 
part of the system. Furthermore, identify existing features of such systems can start at the large 
scale with the fewest details of the system under scrutiny before doing a more detailed analysis at 
finer scales. Such a process provides an efficient and reliable way of analysing and managing 
information of big data systems. 
 
This study revealed the fractality in water distribution networks (WDNs) based on research on 
fractals in complex networks. Specifically, we explored the existence of fractal patterns in six real 
world WDNs of different complexities (e.g. from a network with only 21 pipes to a network with 
2465 pipes). The box-covering algorithm has been applied, which is the most widely used method to 
distinguish between fractal or non-fractal networks. The WDNs are first mapped into undirected 
graphs. Next, the method partitions the nodes into boxes of size Bl , i.e. the maximal distance 
between nodes within each box is at most 1−Bl . By varying the box sizes, different minimum 
numbers of boxes BN  required to cover the entire network can be identified. A network is fractal if 
the regression line for ( )BNlog  and ( )Bllog  is linear. 
 
The results demonstrate the existence of fractal patterns in all case study WDNs, as linear 
regression lines with coefficient of determination over 0.95 ( 9502 .>R ) are obtained in all analyses. 
As further verification, the self-similarity on multiscales is revealed, i.e. the similarity in patterns of 
component criticality. Based on the fractal patterns, a systematic method is also developed for more 
efficient identification of critical pipes in WDNs, e.g. reducing the computational load by 61% in 
the case study. 
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1 BACKGROUND 
Fractals have been identified as one of the most general features of many natural and artificial 
systems that exhibit similar patterning at different scales [1,2,3]. Understanding fractals is a critical 
aspect of decoding complex systems, as the pattern of such large systems (with enormous 
components) can be revealed by identifying only a small part of the system (e.g. as shown in Fig. 
1(A)). Furthermore, identify existing features of such systems can start at the large scale with the 
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fewest details of the system under scrutiny before doing a more detailed analysis at finer scales (e.g. 
as shown in Fig. 1(B)). Such a process provides an efficient and reliable way of analysing and 
managing information of big data systems.  

 
Figure 1. The self-similarity of fractal systems (reproduced from [4]) 

 

The fractality of complex systems has become an emerging topic in complex network science. A 
number of algorithms have been developed to identify whether the studied complex network is 
fractal or non-fractal [3, 5, 6, 7]. However, the practical application of fractality to analysis of 
specific problems in specific networks has not yet been comprehensively explored. In the field of 
water distribution network analysis, a few studies have investigated the application of fractal-based 
methods. For example, Qi et al (2014) developed a fractal self-growth model to generate more cost 
efficient design strategy for the WDN planning of one northern city in China [8]. Similarly, Zeng 
and Li (2014) generated several WDNs using basic fractal patterns, and investigated the reliability 
of the WDNs [9]. Kowalski et al (2015) developed a method for strategic placement of water 
quality and pressure sensors based on the fractal properties in the topology of WDNs [10]. Di Nardo 
et al (2017) applied fractal and complex network metrics to assess the WDNs’ resilience [11]. The 
method can quantify the impact of pipe failure on the WDNs without using hydraulic simulations, 
and consequently avoid tedious simulation of vast number of pipe failure scenarios. Although the 
researches in [8-11] made substantial contributions in studying the fractality of WDNs, no 
systematic studies have been carried out to identify the existence of fractal patterns in variety of 
WDNs. For this reason, this study aims to explore the fractality of various WDNs with different 
configurations and complexity, and also develop a fractal-based criticality analysis method to more 
efficiently identify all the critical pipes in WDNs than the traditional enumeration method. 

 

2 METHODS 
A network is fractal if there is a power-law relation between the number of boxes needed to cover 
the network ( BN ) and the box size ( Bl ) [12]: 
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( ) Bd
BBB lNlN −= 0  

where ( )BB lN  is the number of boxes at size Bl , see as Fig. 2; 0N  the number of vertices in the 
original network (Fig. 2) [3, 12]; and Bd  the fractal dimension, i.e. a scaling factor specifying how 
a pattern's detail changes with the scale at which it is considered [13]. In another word, A network is 
fractal if the regression line for ( )BNlog  and ( )Bllog  is linear (Fig. 3), and the slope of the line is 
denoted as fraction dimension Bd .  

 

 
Figure 2. Procedure of the box-covering algorithm (reproduced from [2]) 

 

 
Figure 3. The regression lines of (A) fractal networks and (B) non-fractal networks (reproduced 

from [2]) 
 
To explore the fractality of WDNs, the box-covering algorithm [2] named as Maximum-Excluded-
Mass-Burning (MEMB) (http://lev.ccny.cuny.edu/hmakse/soft_data.html) has been applied, which 
is the most widely used method to distinguish between fractal or non-fractal networks. The method 
is implemented as follow: 
 
2.1 Mapping WDN into graphs 
The WDNs are first mapped into undirected graphs in which the vertices represent the consumers, 
sources, and tanks and the edges represent the connecting pipes, pumps, and valves [14]. The graph 
is stored as a TXT file, in which each row refers to a link and the first and second column refers to 
the two ends of the link respectively. The file is used as the input for the box-covering algorithm. 
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2.2 Fractality Identification by WDN Clustering 
Next, the network topology is partitioned by grouping vertices into boxes (i.e. clusters) of size Bl , 
i.e. the maximal distance between nodes within each box is at most 1−Bl . By varying the box sizes, 
different minimum numbers of boxes BN  required to cover the entire network can be identified 
(Fig. 1). Specifically, this procedure is implemented as follows [15]: 

1) Specify the box size Bl  (e.g. )3=Bl .  

2) Mark all nodes as uncovered and non-centres (i.e. start with no box). 

3) Calculate the mass [i.e. the number of uncovered nodes within a shortest-path distance less 
than ( ) 21−Bl ] for all non-centre nodes. 

4) Select the node p with the maximum mass as the next centre of a box. 

5) Mark all the nodes with shortest-path distance less than ( ) 21−Bl  from p as covered (i.e. 
all the nodes belong to the box in which node p is the centre). 

6) Repeat steps 3) ‒ 5) until all nodes are either covered or centres. 

7) Record the number of boxes BN  needed. 

8) Repeat step 1) ‒ 7) by varying Bl  to obtain a number of corresponding BN . 

9) Plot ( )BNlog  against ( )Bllog  and determine the fraction dimension Bd .  

 

3 CASE STUDIES 
This study explores the existence of fractal patterns in six real world WDNs of different 
complexities (e.g. from a network with only 21 pipes to a network with 2465 pipes) as shown in 
Figure 4. The Alpine network has been used for vulnerability analysis [16, 17], and all the others are 
benchmarks available at 
‘http://emps.exeter.ac.uk/engineering/research/cws/downloads/benchmarks/’. No modifications 
were made to the properties of the networks. 
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Figure 4. Case study water distribution networks 

 

4 RESULTS AND DISCUSSIONS 
The results in Fig. 5 demonstrate the existence of fractal patterns in all case study WDNs, as linear 
regression lines with coefficient of determination [18] over 0.95 ( 9502 .>R ) are obtained in all 
analyses. Hence, some properties of WDNs should have similar patterns both in different 
clusters/boxes (i.e. self-similarity) and at different scales. To further verify these facts, the criticality 
of pipes in Exnet is studied as an example. In this study, the criticality of a pipe is measured by the 
percentage of water supply shortage resulting from loss of the pipe. Hydraulic simulation in 
EPANET [Rossman, 2000] is used to model the loss of a pipe by changing the status of the pipe to 
completely close throughout the simulation period, and estimate the subsequent shortage of water 
supply (more details of the estimation is available in [17]). Figure 6(A) plots the criticality of all 
Exnet pipes for the whole network following a descending order. Similarly, Figure 6(B) and (C) plot 
the criticality of pipes in each cluster (i.e. 37=BN  in this case) and that of interconnections 
among clusters, respectively. Moreover, Figure 6(D) plots the criticality of all clusters, measured by 
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the water supply shortage resulting from loss of all interconnections between a cluster and the other 
clusters (i.e. isolate a whole cluster from the system). 

 

 
Figure 5. The regression lines of case study water distribution networks 

 

 
Figure 6. The patterns of criticality in Exnet 
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As Figure 6 shows, all the patterns of criticality are similar to each other and identically follow a 
long tail distribution [19], which reveals the self-similarity and multiscale similarity in the fractal 
WDN. As for self-similarity, pipes in different clusters [Fig. 6(B)] have very similar patterns of 
criticality [Fig. 6(A)]. Further, the patterns are also extremely similar to that of all pipes in the 
whole network. Hence, the patterns of WDNs can be revealed by identifying only a small part of the 
system (e.g. one cluster). As for multiscale similarity, the criticality of all clusters (i.e. at the cluster 
scale, Fig. 6(D)) also shows a similar pattern to that of all pipes at the whole network scale (Fig. 
6(A)). Therefore, identifying existing features of WDNs can start at the large scale with the fewest 
details (e.g. the cluster scale) of the system under scrutiny before doing a more detailed analysis at 
finer scales (e.g. the whole network scale). Such a process provides an efficient and reliable way of 
analysing and managing information of big data systems. For instance, to identify all the critical 
pipes in WDNs, it is possible to first identify the critical clusters and eliminate the uncritical ones to 
improve efficiency. This example is introduced in the APPLICATION section to further 
demonstrate the practical application of WDN fractality. 

 

5 APPLICATION OF FRACTALITY 
This section is to demonstrate how to use the fractality of criticality described above to identify all 
the critical pipes in WDNs. The procedure is summarized below and further explained using Exnet 
as an example: 

 

1) Set a threshold of criticality for the critical pipes. For instance, a pipe is regarded as critical if 
its criticality is equal or larger than 10% (Loss of the pipe will cause at least 10% of water 
supply shortage). 

 

2) Analyze the WDN at cluster scale: 

2.1) Calculate the criticality of all clusters (e.g. 37 for the Exnet) and the interconnections 
among clusters (e.g. 106 for the Exnet). 

2.2) Plot the criticality of all clusters following a descending order [e.g. Fig. 6(D)] and select the 
clusters with significant higher criticality as critical clusters, e.g. the clusters in the rectangular in 
Fig. 6(D).  

2.3) Select all the interconnections with their criticality above the threshold identified in step 1) 
as critical pipes (in the rectangular in Fig. 6(C)), and select all clusters connected by those critical 
interconnections as critical clusters (if not already selected in step 2)), see as Fig. 7. 

 

3) Analyze the WDN at whole network scale (the finest scale): 

Calculate the criticality of all the pipes within critical clusters and identify the critical pipes above 
the threshold. 
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Compared with the traditional enumeration method, the fractal approach above avoids analyzing the 
system completely based on the finest scale which requires calculating the criticality for each pipe 
(i.e. 2465 calculations for Exnet). By eliminating uncritical clusters at the cluster scale, the fractal 
method can reduce the total number of calculations by about 61% (i.e. only requires 953 
calculations including 37 for clusters, 106 for interconnection among clusters, and 810 for pipes 
within critical clusters, respectively). However, as Fig. 7 shows, the fractal method is as reliable as 
the traditional method since all the critical pipes falls in the identified critical clusters and critical 
interconnections.  

 

 
Figure 7. Verification of the fractal method by comparing the results with the traditional method 

 

6 CONCLUSIONS 
Toward deepening insights on the complexity of water distribution networks (WDNs), this study 
investigated the fractality in WDNs by using the box-covering algorithm in complex network 
science. Six real world WDNs of different complexities were studied and the results show that: 

 All the case study networks are fractal regardless of the complexity of the systems. 

 For the property studied (i.e. pipe criticality), similar patterns are observed both at different 
scales and at different parts of the system. 
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 All the critical pipes in a WDN can be identified much more efficiently using the fractal 
patterns, e.g. 61% reduction of the computational load. 

Hence, fractals may also be a property of WDNs and provide a new perspective for understanding 
WDNs’ complexity. Eventually, fractal-based analytical tools can be developed to realise reliable 
and efficient analyses of extremely complex problems in WDN design, operational control, 
maintenance, sustainable development planning, etc. Future studies will analyse further real-world 
WDNs with various topological and behavioural properties considered, and apply fractal in variety 
of specific water distribution system analyses. 
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