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ABSTRACT 
To  date,  drinking  water  quality  monitoring  frequently  relies  on  a  threshold-based  approach
coupled  with  occasional  manual  sampling  for  reference  analysis  and  as  evidence  for  legal
requirements  concerning  the  water  quality.  However,  the  increased  availability  of  online
measurements provides a good basis for an adaptive approach to high-resolution monitoring of
water quality. In this case study, patterns in water quality of limestone springs were identified using
multivariate analysis and artificial neural networks. Self-organizing maps were used to calculate
system states based on six online parameters (spring discharge, turbidity, pH, el. conductivity and
spectral  absorption  at  254  nm).  A  non-linear  Sammon  projection  highlighted  the  relationship
between the different system states, rendering a basis for the quantification of change occurring
during  the  observation  period  in  December  2015  -  January  2016.  The  multivariate  approach
highlighted different phases during an event based on the relative location in a scatter plot and on
the xy distance between two system states based on consecutive measurements. As this approach
does not require the definition of thresholds and considers actual changes in system state, it  is
applicable to complex systems and adaptive management strategies.
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1 INTRODUCTION

In Switzerland, as in many other countries, drinking water is mainly extracted from porous aquifers
or collected from karst springs. In both cases, the local and regional geological settings strongly
influence  both  water  composition  and  quality,  including  chemical,  physical  and  biological
components. Furthermore, activities and industries in the catchment area, such as agriculture and
construction sites, are often drivers for variability in water quality and quantity. In combination, the
geological  settings,  activities,  seasonal  practices  and  event-driven  dynamics,  lead  to  spatial-
temporally heterogeneous patterns in water quality [1]. The nature of the combined effect of these
influences  on  water  quality  is  difficult  to  predict,  even  more  so  when  several  influences  are
superimposed and conflicts of usage arise. Under such circumstances, an effective management of
drinking water supply systems requires knowledge on the processes influencing the water quality
(and quantity) both over time and space. One set of approaches is based on an offline analysis of
groundwater  providing  a  basis  for  long-term management  of  the  drinking  water  resource.  For
example, modelling approaches have been able to identify karst springs with elevated vulnerability
in terms of microbial contamination [2] or define protective areas around groundwater extraction
wells  to  reduce  the  likelihood of  contamination [3].  Short-term management  of  drinking water
resources aims to avoid contamination using online measurements and rapid decisions leading to
changes in the operating system of the water supply, e.g. changing the flow field of the groundwater
by  reducing  groundwater  extraction  or  increasing  the  level  of  disinfection  (drinking  water
treatment).
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Only 30% of the drinking water in Switzerland is treated, a further 30% only runs through a single
treatment step (UV-disinfection). 10% is filtered then disinfected and the remaining 30%, including
all of the water originating from the lakes (approx. 20% of total water production of 0.94 billion m3

in 2010) is treated in  a  multi-step process. There is a general consensus that additional treatment
steps should be avoided where possible. Approximately 35% of the total drinking water consumed
in 2010 was delivered by five large suppliers [4]. Most of the water suppliers, however, delivered
water to communities with less than 10’000 inhabitants, accounting for 20% of the total drinking
water  consumption  in  2010  [4].  Many  of  these  smaller  water  suppliers  are  run  by  the  local
community and operated by part-time employees, usually without training in data analysis.

To date, water quality monitoring frequently relies on a threshold-based approach coupled with
occasional manual sampling for reference analysis and evidence for legal requirements concerning
the water quality. However, the increased availability of online measurements as well as additional
and aggregated data, e.g. integrated from different sources, provides a good basis for an adaptive
approach to high-resolution monitoring of water quality and with this, a significant support for the
operators of the drinking water producers. Considering the natural heterogeneity of untreated water
quality, structural organization and the desire to maintain a minimal level of treatment, the water
suppliers  are  often  confronted  with  the  difficult  task  of  making  rapid  decisions  to  avoid
contamination. The following case study presents an adaptive approach to monitoring changes in
water quality based on multivariate pattern analysis of online measurements. The aim was to design
a  method  to  capture  variability  and  change  in  heterogeneous  systems  to  assess  potential
contamination without the use of thresholds. Furthermore, the method needed to have the potential
to be automated and integrated into online management systems and to be operational without any
training in data analysis.

2 STUDY SITE
The data in this case study was recorded in a drinking water supply system located in the limestone
hills in NW Switzerland. These Jurassic Karst systems provide ample high-quality drinking water,
but are vulnerable to contamination [1, 2].  The springs in this  case study, as many other karst
springs,  were  characterized  by  a  high  degree  of  dynamics  covering  different  scales  including
seasonal and operational-related fluctuations. The discharge from seven springs was converged and
treated before being pumped into a reservoir, which fed into the local distribution network. When
turbidity  exceeded 1 FNU, the water was discharged into the stream; otherwise,  the water was
treated by UV-disinfection. The water supplier monitored spring discharge (combined discharge
only) and turbidity. In addition to the measurements already in place, a bypass panel was placed in
the  pump  station  to  monitor  the  following  additional  parameters:  electrical  conductivity  (EC),
spectral absorption coefficient at 254 nm (SAC254), pH and temperature. All measurements were
made in the combined discharge before treatment. The time-series shown in Figure 1 were recorded
between 30.12.2015 and 11.01.2016. The temporal resolution of the data used in the analysis and
shown in Figures 1 and 2 was 10 minutes. All sensors were manufactured by Endress+Hauser. The
measured data were transmitted to the operating system of the water supplier via a data logger
(Liquiline, Endress+Hauser). The data were managed in an SQL database and visualized as part of
the water suppliers Supervisory Control And Data Acquisition (SCADA) system.
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3 RESULTS

3.1 Univariate Temporal Dynamics
The seven springs connected to the water supply had a common catchment area with relatively
homogenous land use. The parameters recorded in the springs were thus subject to very similar
precipitation events and land surface pressures and processes. The data shown in Figure 1 have not
been treated; the outliers on the 10th January were be assigned to a data transmission irregularity, as
both  SAC254 and temperature  dropped to zero.  Spring  discharge  showed three  clear  increases
during  the  observation  period,  with  peak  discharges  reaching  400  l/m,  which  was  a  four-fold
increase  over  initial  conditions.  Turbidity  and  SAC254  also  showed  three  increases.  El.
conductivity showed three characteristic  decreases as surface water  with a  lower ionic strength
reached the springs [1].

Figure 1 Time-series of untreated measurements of six parameters used to monitor water quality of
a karst spring. SAC254 is the spectral absorption coefficient at 254 nm. The measurement

resolution was 10 minutes.
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The  fluctuations  visible  in  the  temperature  time-series  showed  a  daily  pattern  related  to  the
operation of the pumps in the room where the panel was located. The hot air from the pumps heated
the water in the thin tubes of the panel by approximately 0.2- 0.4 °C. As pumping ceased during the
event on the 8th/9th January, the daily temperature fluctuations also ceased. There was an indication
of further operational influence around 1 pm on the 9th January, whereby all parameters but el.
conductivity appeared briefly affected (Figure 1). pH showed two decreases during the observation
period. There was a third decrease around midnight on the 8 th/9th January. However the initial drop
was followed by a rapid increase in pH. 
Following infiltration, surface water travels along different paths through limestone karst systems
before reaching the springs. The routes the infiltrated water runs can through vary between fast
propagation in large underground rivers to the slow movement through the limestone matrix [2]. In
this case study, besides the route through the karst system, the location where the discharged water
converged with water from other springs also had an effect on the shape of the time-series, i.e. how
long it took for the water to reach the monitoring point after exiting the karst system at the spring.
The different travel times through a karst system caused the time-series to show ‘piggybacking’.
This phrase refers to a secondary peak reflecting the arrival time of infiltrated surface water with a
longer travel time. ‘Piggybacking’ was most pronounced in the turbidity measurements, whereby
two peaks in turbidity levels were visible (event 8th and 9th January, Figure 1). SAC254 also showed
a small indication and the sharp increase in pH coincided with the turbidity ‘piggyback’.

3.2 Multivariate System State
The multivariate data analysis in this  case study was based on a proxy approach to monitoring
variability in water quality. Self-organizing maps are a form of artificial neural networks, which can
be used to identify and analyze patterns in complex system data [5]. In this application they were
used to: a) reduce the dimension of the data set, b) calculate actual system states based on online
time-series and c) lay emphasis on the similarities and dissimilarities between system states. The
output  of  the  self-organizing  maps  is  generally  a  two dimensional  grid  with  the  system states
assigned to an area in the map [5]. To increase the visibility of the similarities and the dynamics of
the system as it  moves from one state to another,  the ‘best-matching units’ (output of the self-
organizing map) were projected into a two-dimensional space. A nonlinear Sammon projection [6]
was used to project the system states into a space defined by the variability in the data set. This
method minimizes the difference between the distributions of the time-related ‘best-matching units’
and the original input.

Based on time-series such as the ones shown in Figure 1, the multivariate approach identified and
evaluated changes in system state as part of a pattern of water quality. The six parameters (spring
discharge,  turbidity,  temperature,  SAC254,  el.  conductivity  and  pH)  were  simultaneously
considered for each observation time (corresponding to one point in Figure 2). 
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Figure 2 Subplots A and B show the projected results of the multivariate self-organizing map. The
projection axes refer to system state space defined by the distribution of the underlying data. Two
events between the 7th and 10th January 2016 were highlighted to show different phases through

which the system state moved during an event. The subplots C to H show the input data used for the
calculation. The different phases are highlighted by three consecutive system states each (three

phases during event one and four phases during event two).
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The relative values of the input data define the state of the system at the time of the measurement in
relation to the other system states, which were calculated from the other measurement times in the
observation period. Figure 2 shows the distribution of the system states in relation to each other.
Each  point  in  subplots  A  and  B  represents  one  observation  time  and  all  six  parameters.  The
coloured points in subplots A and B correspond to different phases the system passed through
during two events in January 2016 (7th/8th and 8th/9th January). The axes represent the projection
limits and are dependent on the overall heterogeneity of the system states occurring in the data set.
For each phase of each event, three points were highlighted in Figure 2. Each cluster of three was
calculated from consecutive measurements with a 10-minute resolution between the measurements.
The initial phase (i, red points) was characterized by little variability: points are close to each other
in the XY-scatter plot. Subplot B (event on the 8th and 9th January) includes a transition phase (ii,
blue points), whereby considerable variability occurred in the system: the blue points are spread
over a large area of the plot. The new system state (iii, green points) was characterized by more
sparse distribution (larger distances between the points). This suggests fewer similar states in the
data set (overall few points in the area) and greater variability in the underlying data. The last phase
(iv,  black points)  was characterized by less variability as the points were closer to each other,
indicating more inert system states as there was less change over the 30 minutes during which the
data were recorded. Following the first event (7th / 8th January, subplot A), the system did not return
to the previous state: the red and the black points are not in the same location in the plot. However,
as shown in subplot B, the system returned to a similar, not identical state following the second
event: the black points (iv) are in a similar location to the red points (i). 

4 DISCUSSION

The data set recorded in the water discharged from seven karst springs in January 2016 in NW
Switzerland clearly  showed two characteristics  of  a  complex system:  a)  operational  influences:
daily temperature fluctuations due to exhaust air from the pumps, b) superposition: ‘piggybacking’
visible in the turbidity data linked to different flow paths and travel times from surface infiltration
to arrival at the observation point in the pump house. Each individual parameter bears the potential
as an indicator for surface water infiltration and thus as an indicator for potential contamination. For
example, SAC254 often represents organic matter from the surface carried in with infiltrating water.
However, the reactions of individual parameters may vary over time and between water supply
systems. Beside parameter-specific variations, the historical sequence of events, both hydrological
and operational,  can influence the histograms of the measured parameters,  as illustrated by the
‘piggybacking’. The interpretation of the individual time-series requires process knowledge of both
the hydrogeological and the operational aspects of each water supply.

The multivariate approach consisted of combining all six parameters to calculate the system state
for each observation time. The projection of the results into a 2D plot highlighted the overall pattern
of system states representing water quality.  The location of each individual system state in the
scatter  plot  could  then  be  assessed  based on the  overall  distribution  of  system states  from an
observation  period,  as  well  as  the  system  states  from  immediately  prior  and  posterior
measurements. The multivariate approach highlighted new system states located in sparsely covered
areas of the two-dimensional plot (Figure 2). Gradual shifts in system state appeared as trends (e.g.
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iii, green points in Figure 2), whereas rapid shifts moved from one side of the plot to another (e.g.
during the transition phase in subplot B, Figure 2). Furthermore, the dynamics of a system could be
followed throughout the event, i.e. each phase of an event is captured (onset, peak and ‘return to
normal’). 

The multivariate analysis method based on self-organizing maps and projection thus summarized
the dynamics in the original data set and reduced the amount of information to be interpreted. When
viewed as a scatter plot, the interpretation of the results of the multivariate method also requires
familiarity with the analysis method. However, the quantification of the variability and dynamics
can be simplified by looking at the sparseness of the points and their temporal succession (distance
in  the  xy  projection  between  two  measurements).  This  quantification  could  be  automated  and
integrated into a SCADA system, e.g. as an alarm index indicating the current system state.

This data-based approach to pattern analysis does not define parameter thresholds, but assesses the
system state based on the multivariate data set and its behavior over time. In this form, the neural
network  required  little  input  information,  as  the  training  was  based  on  data  from within  each
observation period. The motivation for this solution was threefold: Firstly, differentiating between
critical  and  non-critical  change  in  the  system  over  time  was  a  main  identifier  of  potentially
hazardous system states.  Secondly,  the relationship between individual system states with other
system states could be captured by the heterogeneity of the results and visualized by the xy extent
of the scatter plots (Figure 2, subplots A and B). Thirdly, the simplified quantification bears a high
potential to transfer this approach between different drinking water suppliers and to integrate it into
SCADA systems. This approach has been tested in several drinking water supply systems with
different  settings  and  using  different  combinations  of  parameters  [1,7].  Based  on  these
characteristics, the approach allows for fluctuations inherent to the karst spring characteristics, such
as seasonal or regular operational influences and can be used as an online early-warning system to
detect quality-relevant changes. Furthermore, the user, human or an automated system, can rapidly
identify similar system states and observe changes as they occur,  i.e.  the beginning and end of
contamination events or baseline shifts. As the extent of an event and its effects on any of the
parameters recorded may shift and change over time it was important to select a method that does
not rely on fixed thresholds to manage a dynamic system at the interface between a heterogeneous
natural system and a regularized technical process.

5 OUTLOOK

The proxy-based approach applied in this case study makes use of a methodology that allows for
change and thus provides an adaptive approach to monitoring the dynamics in water quality. To
ensure the system under observation is depicted correctly, the multivariate analysis depends on the
selection of the monitored parameters, i.e. in combination they need to be sensitive to changes in
water composition that are likely to affect water quality. Future work will include the automated
quantification  of  the  changes  occurring  in  the  pattern  of  system  states.  Furthermore,  the
visualization and communication of the results to the end-user are an essential part of any early
warning system. 
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By adopting an online data-driven monitoring system, further adaptive management strategies can
be developed and implemented. This field-based element is a key part of adaptive management
strategy for drinking water suppliers. With further technological developments, such as sensor data
availability, the reliability of a measurement can be tracked, i.e. if sensor maintenance is overdue,
the reliability of a measurement may be impaired. In combination with the measured values, such
additional  information  can  provide  the  decision  maker  with  sufficient  evidence  to  efficiently
manage the process. It may also help to deal with outlier data and identify potential causes for new
system states. However, a large part of this transparency in system analysis relies on the availability
of  the  information,  e.g.  by  installing  OPC  UA  (standardized  software  interfaces  with  unified
architecture) and ensuring a (near) constant availability of the sensors.

Adaptive management strategies include groundwater extraction regulated on a well-to-well basis
depending on time-variant  pressures,  as well  as sampling based on event-driven dynamics of a
spring.  Solutions  that  combine  the  characteristics  of  the  process  under  scrutiny  with  online
measurements, e.g. by pattern analysis, can yield a greater efficiency and prove more robust under
change. In this sense, smart systems encompass reactive approaches to managing water resources,
whereby they identify changes in the system early on and thus provide ample time to select and
implement suitable operational actions.
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