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ABSTRACT 

The paper presents a systematic approach for narrowing down the search for leaks and unknown
closed valves in the water distribution network. The developed approach is applied on a real system
and a calibration  problem is  solved  for  the ultimate  purpose of  detecting  existing background
leakage hotspots. A Genetic Algorithm is used to solve  the  optimization problem searching for
calibration parameter values, while minimizing the differences between observations and model
outputs.  The optimisation problem is coded in two ways, a scenario-based framework where the
maximum number of leaks and closed valves in the network is specified and non scenario-based
framework. The leak detection methodology takes advantage of the new pre-processing method to
reduce  the  search space size  for  the optimisation problems to only  significant  parameters  that
contribute  to  the  fitness  and  hydraulic  changes  of  the  model.  Artificial  calibration  data  are
generated by means of hydraulic modelling employed to mimic planned hydrant discharges during
a low demand period. The staged approach demonstrates that the search for location and range of
flows for unknown leaks can be reduced to only a small part of  the network components. This
appears  to  provide  additional  benefits  towards  calibrations  problem complexity  reduction and
reduced time in finding leaks. 
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1 INTRODUCTION
Small leaks in water  distribution networks  (WDNs)  often remain  undetected,  giving way to large
amounts of lost water and revenue. Their impact in the WDN grows over time and can result in pipe
bursts, having negative consequences for the customers. Detecting leaks within WDNs at an early
stage is, thus, of significant importance to a water company. Well calibrated WDN models can be
used by performing reliable simulations, “comparing” and analysing the network monitoring data,
with the model simulated outputs. Accurate calibration and determination of the WDN state is often
associated with the adjustment of model parameters to match simulated pressures within an accur-
acy range of ±1 metre relative to observations [1]. However, model calibration is based on trial-and-
error approaches, due to the lack of major advances from the practitioner’s perspective, and a coarse
accuracy criterion, compared to the logging accuracy of 0.1%, for supporting operational work at
the distribution mains level. A big problem associated with embedded shortfall in the efficacy and
calibration of WDN models is the lack of the measurements, i.e. of observed heads and especially,
flows from key mains within the WDN. Furthermore, the local demands within the District Metered
Areas  (DMAs) are  often  too  small  to  generate  significant  pipe flows  for  making  accurate
measurements with the associated head losses being too small to provide suitable observations for
effective calibration.  This can,  often, lead to the formulation of an ill-posed calibration problem,
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characterized by non-uniqueness and instability of solutions. Except from that, the widely available
and improved information of both the topological representation of the WDN and related boundary
conditions has increased the size of the hydraulic model and, as a result, the complexity of network
analysis. This has a major impact on system observability, identifiability and, consequently, the ill-
posedness of the calibration problem. So far, not much has been done to tackle this problem. Here,
we consider a new system for pre-processing the hydraulic model, based on the sensitivitis of model
predicted variables and graph theory,  with the aim to narrow down the search for leaks in the
WDNs and then detect them using an optimization algorithm. The aim is to reduce the inverse mod-
elling problem size and establish a foundation for improved model quality assurance by avoiding
unnecessary simulations that  impact the model fitness. The approach takes into account suspect
valves with unknown status and nodal leakage. The narrowing down approach is applied to a real
WDN and the important calibration parameters are highlighted, which formulate the basis of the
optimisation  problem.  A  Genetic  Algorithm  is,  then,  used  to  solve  the  optimization  problem
searching for calibration parameters values, while minimizing discrepancies between observations
and model predictions. The effectiveness of this approach is examined using two different optimisa-
tion problem coding approaches. The paper is organized as follows: section 2 provides a literature
review on approaches for reducing the inverse modelling problem size,  section 3 describes  the
search space reduction approach and the inverse modelling method, section 4 presents the case
study, section 5 compares the optimisation results, followed by conclusions.

2 BACKGROUND
The impact of a leak in a WDN can be modelled by assigning a demand, or emitter to nodes in the
system with the aim to match an increase  at the inlet flow [2]. Analysing the difference between
measurements and modelled outputs from leak scenarios can indicate the probability of a zone to
contain leakage.  Any parameter associated  with an  uncertainty in  its  value is  set as candidate for
adjustment during the detection process. This can result to an ill-posed problem, due to the larger
number of calibration parameters relative to the number of observations. Several authors attempted
to reduce the problem size, in order to tackle ill-posedness. Cheng & He [3], applied singular value
decomposition to create the sensitivity matrix for the model and then, optimise nodal demands.
Goulet et al.  [4] proposed a leakage detection and sensor placement methodology based on error
domain model falsification. The problem was reduced by falsifying model scenarios for which the
difference  between  predictions  and  measurements  is  larger  than  the  maximum plausible  error.
Nasirian  et  al.  [5]  combined a  step-by-step  elimination  method  with  a  GA  for calibration  and
leakage detection, where nodes that provide no contribution in leakage among uncertain parameters
of calibration of a WDN were eliminated. Sophocleous et al [6] proposed a graph theory-based par-
titioning methodology, where the leak detection inverse modelling problem after the WDN is parti-
tioned  into  different  trees, or clusters  based  on its  structural  and  connectivity  properties  (i.e.,
topology and hydraulics).  Sophocleous et al. [7] used preliminary topological analysis and sensitiv-
ity-based methods to simplify the calibration problem for leak detection purposes. 

3 METHODOLOGY

3.1 Artificial Generation of Field Test Data
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An artificial set of noise-free pressure and flow observations was generated after an EPANET2 [8]
hydraulic simulation analysis considering the “true” system state, i.e., the network with leaks and
unknown closed valves. A number of nodes and pipes were chosen for monitoring pressure and
flow, respectively,  with the observations being used in the calibration process. The dataset was
generated to emulate a Night Fire Flow Field Test (NFFFT) situation, where hydrants are flushed
during periods of minimum demand to cause a controlled hydraulic stress to the system. Water
discoloration risks were taken into consideration with regards to maximum hydrant velocities [9]. 

3.2 Minimum Detectable Leakage
The  Minimum Detectable  Leakage  (MDL)  was  determined,  based  on  the  configuration  of  the
pressure and flow monitoring devices. A simulation-based framework was applied. The background
leakage figure for the WDN was considered as a single leak in a model with no leakages and was
simulated at every node. Each time the emitter value was reduced until a point is reached where the
head loss from the simulated leak flow across all sensors does not exceed its accuracy range (e.g.
±0.1m). This establishes the MDL for each node in the WDN. 

3.3 Narrowing Down Approach to Reduce the Search Space
As a starting point any node with an associated uncertainty in its emitter value is considered as a
candidate leak for adjustment during the detection process. This excludes any pressure monitored or
flushed  locations  during the NFFFT as they are assumed to have been checked for leakage.  A
systematic  preliminary  analysis  of  the  WDN model  was  performed  to  have  as  few calibration
parameters as possible to avoid unnecessary simulation of solutions that do not cause any impact on
model fitness. The first step concerns valves in the WDN. Each valve in the model has two nodes
associated with it. Assuming that leaks do not happen at valves, but only at demand nodes, all nodes
associated with valves were removed as potential leak locations (Figure 1). In the second step all
nodes on pipes that cannot supply the MDL flow are removed, as including them in the search space
would lead to simulations that result in pressure variations similar, or less than the pressure reading
accuracy range. A sensitivity analysis is, then, carried out on the remaining parameters at step three,
taking  into  account  engineering  constraints.  This  provides  insight  to  the  observability  of  the
different parts of the WDN according to the location of available measurements, while falsifying
potential leaks locations that do not meet the constraints. The final step involves a graph theory-
based approach. Depth First Search is applied on the remaining nodes to eliminate locations that are
close together within a threshold distance,  based on the acceptable search range during leakage
campaigns,  e.g.  ±100m.  With  regards  to  the  candidate
unknown  closed  valve  locations,  a  similar  sensitivity
analysis was performed to assess the effect of any change
in topology and reduce the search space. Furthermore, any
branched component, where no pressure measurements at
terminal  nodes  were  available  were  classified  as
unobservable  from the  available  measurements  and were
also excluded, as calibration cannot be actually performed.
From  the  remaining  valves,  only  those  on  loops  were
included in the search space.  This  is  because,  in  reality,
unknown fully closed valves on any branch of the WDN

Figure 1. The narrowing
down approach for leak

Remove Valves

Remove Pipes unable to 
supply the MDL value

Remove insensitive 
locations

Remove bunched locations 
within threshold distance

Step 1

Step 2

Step 3

Step 4



CCWI 2017 – Computing and Control for the Water Industry Sheffield 5th - 7th September 2017

would be sensed by the customer. The remaining valves and nodes were considered as calibration
parameters for the optimization problems.

3.4 Optimisation Problem Formulation
A MATLAB optimization code for inverse modelling was linked to the EPANET2 tool-kit. A non-
dominated sorting genetic algorithm II (NSGA II) [10], was used where valve status and the emitter
coefficients of the candidate valves and nodes, respectively, were considered as decision variables.
The  calibration  was  defined  as  a  nonlinear  optimization  problem  with  the  single  objective  to
minimize the weighted sum of absolute differences between the observed and simulated values for
nodal heads and pipe flows. The calibration problem was subject to two sets of constraints: (1) the
set of implicit type constraints considering mass and energy balance equations; and (2) the set of
explicit  constraints  used  as  bounds  for  the  algorithm  solution  search  space  for  each  decision
variable. The optimization problem genes were coded in two ways and runs were performed for
both cases.  The first  case listed all  potential  leak and valve locations  as decision variables  for
calibrating the emitter flows and statuses, respectively. The second involved defining a maximum
threshold for the number of leaks and closed valves in the network, i.e. a scenario-based method.
This is because in reality leaks and closed valves occur at a small number of locations and not
everywhere. The optimization problems were formulated as follows:

Search for:   Case 1:         Case 2:      

           
(1)

Minimize:   
(2)

Subject to:    (3)  (4)

Where  �⃗ represents a set of model calibration parameters,  ��, is the status of link  k  at time step t
from a number of candidate links NK, belonging to a vector with values 0 and 1, ��

� in case 1 is the
emitter coefficient for leakage node location i  in demand group n for a number of demand groups
NGroup, or in case 2 for the specified leak n for a number of specified leaks NGroup, with 0 and
��

��� being the minimum and maximum values the emitter coefficient for group n can take. LNi
n in

case 2 is the leakage node index for the node location i for the specified leak n, �� is the number of
the  candidate  leakage  nodes  locations  in  node  group  n,  �(�⃗)  is  the  objective  function  to  be
minimized, corresponding to weighted (�nh,  �nf) goodness-of-fit between the field observed and
simulated values for NH nodal heads (�o−�s) and NF pipe flows (�o−�s), respectively. 

3.5 Inverse Modelling Leak Detection Approach
Two calibration problems were solved to predict system state and status variables as accurately as
possible using a well calibrated model. Each problem was associated with the coding framework
used in the optimisation process. The results were compared to assess how leak detection and topo-
logical calibration (i.e. detection of valve status) performs in terms of accuracy and computational
time. Calibration parameters involved the emitters for the candidate leakage nodes for each demand
group and the candidate valves for the detection of their initial status. Here, a single demand group
was used, as the nodal demand mainly involves domestic consumption, along with a group of emit-
ter coefficients determined based on the minimum detectable leakage and maximum leakage based
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on the background leakage level of the DMA. For the first optimisation analysis all remaining can-
didates following the narrowing down approach were considered as decision variables, whereas in
the second optimisation analysis the scenario-based approach used a maximum threshold of five un-
known leak locations and five unknown closed valves, leading to a total 15 calibration parameters.
Five optimization run were carried out for each calibration problem. Following optimization it is
expected that the simulated model predictions for pressure and flow match the field test data as
closely as possible, while all leaks within the observable part of the network have been accurately
detected and located. The fittest result was considered as the solution closest to the representation of
the true system state. The hydraulic model that was considered for leakage detection assumed all
valves are open, except from known closed boundary valves, and that no leaks exist in the network.
The following GA parameters were used for the optimisation runs: population size of 200, 500 gen-
erations, binary tournament selection operator, random mutation with the probability of 0.1 and
single-point crossover with the probability of 0.90. 

4 CASE STUDY

4.1 The Water Network
The  WDN  model  layout  is  shown  in
Figure  2.  It  involves  a  real-life  DMA
composed  of  202  junction  nodes,  158
pipes, 59 valves and has one inlet, which
is  subject  to  pressure  reduction.  The
total mains’ length is 9.4 km. Flow from
the source node varies between 2.34 l/s
at  Minimum  Night  Flow  (MNF) and
8.72 l/s at morning peak demand. Three
leakage hotspots were introduced at J21,
J35 and J109 leading to a global leakage
of  around 1 l/s  during MNF, or  20 %
relative  to  the  average  inlet  flow.
Moreover,  two valves  were  closed.
Three hydrants (e.g. HYD1-3), included
in  the  EPANET  model  as  nodal
demands, were flushed between 01:00 – 04:30 at flows up to a maximum 6 l/s. Generated field
measurements were obtained from six locations (e.g. P1-6) as well as upstream and downstream of
the PRV (P7, P8), recording pressures every 15 minutes, while inlet flow was also obtained. A total
of 96 data sets over 24 hrs have been used for the calibration process.  

5 RESULTS

For this WDN, 30 % of the average inlet flow, i.e. around 1.5 l/s was used as a starting point for the
determining  the  MDL.  The  narrowing  down approach  resulted  in  total  92  % reduction  in  the
population  of  potential  leak  locations  and 71 % reduction  in  unknown closed  valve  locations.
Following steps 1 and 2, only 40 % and 31% of nodes, respectively, remained in the search space,
after the removal of valves and mainly branched pipes that have small capacities to supply MDL.
Sensitivity  analysis  lead  to  only  21%  of  the  WDN  being  a  potential  leak  location,  while  an

Figure 2. The True system state illustrating
the leakage hotspot locations and flows, the
closed valves, sensor locations the flushed

hydrants and flow routes.
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introduction of a ±100m distance threshold at Step 4 lead to the final reduced list of candidates. The
best solutions from optimisation runs between the non-scenario and scenario-based approaches have
been selected  for a comparison. These  are presented in  Figure 3 illustrating the  detected leakage
hotspots and closed valves. The results were obtained after applying all steps of the narrowing down
approach  and  significantly  reducing  the  problem.  Interestingly,  following  Step  4  the  true  leak
location J35 was removed from the search space due to the distance threshold.  The non scenario-
based optimisation lead to a best solution with an objective error of  F=1.19. The  two unknown
closed  valves were correctly identified with no false positives.  However, leak detection was not
correct  although the  close  match  of  the  model  outputs  with  the  observations.  Two leaks  were
identified at a total flow equal to the true water losses. One was located 25m away from the leak

J35, while the second was detected more than
300 m away from the closest leak J24. This led to an incorrect detection of emitter values. The best
solution was reached after 1081 seconds. On the other hand, when a scenario-based method was
used a  fitter  solution of  F=0.82 was achieved only after  224 seconds.  The J109 was correctly
detected in terms of location and emitter flow, while the

Figure 3. Comparison of best optimisation runs between the two approaches.

node closest to J35 was also reported as a leak. For the second leak the detected flow did not match
the true emitter flows, but the total losses from both leaks, again equalled the true water losses.
After the observation that the correct amount of water losses could be detected an additional search
space  reduction  stage  was  introduced,  where  the
upper  bound  for  the  range  of  emitter  flows  was
adjusted  to  equal  the  maximum  detected  leakage
flow  from  the  best  optimization  runs,  i.e.  a  total
water loss of approximately 0.7l/s. This reduced the
range  of  flows  by more  than  50%.  Moreover,  the
status of the two frequently detected closed valves
was fixed and the optimization was reran.  In both
cases  the  best  result  lead  to  F=0.66,  the  lowest
achieved even though a true leak location was not in
the search space. Three leaks were detected at J24

Figure 3. Optimisation result after reduction in
the range of flows and fixed closed valves.
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and J109 detected with flows very close to the true leaks (Figure 3). The third leak was detected at
the node closest to J35, as the true leak node was removed from the search space after applying step
4.

6 DISCUSSION

6.1 Pros and Cons of Narrowing Down the Search Space
In real systems the inverse calibration problem is often under-determined, due to a larger number of
calibration parameters relative to the available measurements, which must be grouped to produce an
even/over-  determined problem.  This  often  leads  to  non-uniqueness  of  the  identified  parameter
values.  A non-uniqueness problem occurs when multiple parameter vectors correspond to similar
objective function values, i.e. to near-optimum values of roughly equal magnitude, leading to a non-
unique  solution.  This  was  also  observed  here,  where  two  leaks,  detected  at  equal  total  flow
compared to the true situation, produced a similarly fit objective function value relative to the best
result  of  F=0.66 achieved after the reduction in the range of flows. However,  all  leaks have a
unique pressure “signature” effect on the WDN, which should be identified to correctly localize
them. Thus, a well monitored WDN is necessary to accurately detect leakage hotspots and unknown
closed valves that cause small and local head losses. In addition, increased flow monitoring through
waste meters, or use of prior information can significantly improve the uniqueness of the problem
and consequently the detection accuracy. Through the narrowing down approach, which considers
topological, sensitivity and graph-based analyses, important benefits were secured, as unobservable
components were removed from the search space causing a significant reduction to the number of
calibration  parameters  and  avoidance  of  unnecessary  solution  generations.  The  scenario-based
approach was able to correctly identify the two larger leaks in the WDN within a small distance and
less computations relative to the non-scenario based approach. The reason lies in the less decision
variables and complexity of the problem, which was established after specifying the number of
maximum leaks and unknown closed valves in the WDN, which resulted in a better starting point
for the initial population of solutions for the GA. However, as the above case study demonstrates,
the accuracy of result  can be significantly affected if true leak locations  are removed from the
problem during search space reduction.  If  few observations  are  available  this  can lead  to  false
positive detection of leakage hotspots and incorrect identification of emitter flows. On the other
hand, in both cases although the true leak J35 was removed the total water losses were identified. A
subsequent reduction of the search space associated with the range of flows led to much more
accurate leakage localization for both cases. Both approaches have shown that if the solution search
space is sufficiently reduced, the optimum, or near-optimum solution can be found. The scenario-
based approach, however, seems to provide additional benefits in terms of less computations. This
is mainly observed if the search space is increased, due to the fact that the number of decision
variables would remain fixed, whereas in a non scenario-based approach the number of calibration
parameters will increase. In theory, an over-determined optimization problem including observable
parts of the WDN as calibration parameters should be able to be solved with a reasonable accuracy
with both approaches. In practice, the synergy between the narrowing down approach and inverse
modelling leak detection can significantly reduce the time to find leaks and minimize the chance for
supply interruptions.  

6.2 Improved Detection Through Better Quality Datasets
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Optimisation techniques can contribute to earlier and automated leakage detection if accompanied
by sufficient  and good quality  field  data,  which is  necessary for  the accurate  determination of
calibration parameters. Thus, the impact caused by small unknown leaks, or the local effect caused
by unknown closed/open valves  would often  require large datasets to allow detection due to the
measurement noise levels compared to model accuracy. In reality, this comes into conflict with the
financial,  resource  and  time  constraints  faced  by  water  companies.  Furthermore,  the  current
calibration accuracy threshold for simulated pressure outputs reduces the chance of detecting hard-
to-find leaks and topological anomalies. Introducing known interventions during field tests, such as
hydrant  flushing  during  NFFFTs can contribute to better quality datasets.  By taking into account
discoloration risk, flushing hydrants at key locations during MNF, i.e., when leakage is at its highest
value, causes a controlled hydraulic stress on the WDN, while  emphasizing the hydraulic impact
arising from  existing  topological and leakage-related  anomalies.  This can create  a more unique
pressure signature for the existing situation. The selected locations aim to hydraulically stress as
many pipes as possible, increasing the probability to detect the faults. Choosing the locations for the
flushed hydrants, as well as the sensor placement based on smart analyses, such as the sensitivity,
can provide enhanced opportunities for more successful detection of those previously undetected
model anomalies, through the abovementioned inverse modelling methods. 

7 CONCLUSIONS

A  search space reduction approach  was presented that  reduces the complexity of the calibration
problem and contributes  to  earlier  leak detection  through inverse  modelling associated with  an
optimisation method. The approach has been formulated and applied to a real network,  where the
search for unknown leaks and closed valves was significantly reduced to around 10% and 30% of
the network components respectively, appearing to provide additional benefits towards calibrations
problem complexity reduction. The method identifies  significant parameters that contribute to the
fitness  and hydraulic  changes  of  the  model, while  providing a  systematic  method to eliminate
calibration parameters. Discussions were also made on the ill-posedness of the calibration problem
and how  improved  accuracy can be achieved  even if  true leak locations are  removed from the
search.  The  artificial  case  study  has  been  successfully  used  to  test  for  the early detection  of
unknown valve statuses and leakage hotspots. The results suggest that a scenario-based optimisation
can bring benefits in both computational time and accuracy, especially in a more complex problem
with more decision variables.  In practice, the promising approach can be lead to a useful tool for
network operations for reducing the time to find existing leaks. 
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